123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- # '''
- # 模型筛选
- # '''
- ## 导入常用基本包
- import os
- import pandas as pd
- import numpy as np
- from PIL import Image
- from model_saver import save_model
- # 机器学习模型导入
- from sklearn.ensemble import RandomForestRegressor
- from sklearn.model_selection import cross_val_score,cross_val_predict
- from sklearn.model_selection import train_test_split
- from sklearn.metrics import mean_squared_error
- ## 导入常用辅助函数
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.model_selection import cross_val_score
- from sklearn.model_selection import cross_val_predict
- ## 导入数据处理函数
- from sklearn.preprocessing import StandardScaler
- from sklearn.preprocessing import MinMaxScaler
- ## 导入评分函数
- from sklearn.metrics import r2_score
- from sklearn.metrics import mean_squared_error
- from sklearn.metrics import mean_absolute_error
- from sklearn.metrics import accuracy_score
- from sklearn.metrics import log_loss
- from sklearn.metrics import roc_auc_score
- # 导入数据
- data=pd.read_excel('model_optimize\data\data_filt.xlsx')
- x = data.iloc[:,1:10]
- y = data.iloc[:,-1]
- # 为 x 赋予列名
- x.columns = [
- 'organic_matter', # OM g/kg
- 'chloride', # CL g/kg
- 'cec', # CEC cmol/kg
- 'h_concentration', # H+ cmol/kg
- 'hn', # HN mg/kg
- 'al_concentration', # Al3+ cmol/kg
- 'free_alumina', # Free alumina g/kg
- 'free_iron', # Free iron oxides g/kg
- 'delta_ph' # ΔpH
- ]
- y.name = 'target_ph'
- Xtrain, Xtest, Ytrain, Ytest=train_test_split(x, y, test_size=0.2)
- # 筛选随机种子
- score_5cv_all = []
- for i in range(0, 200, 1):
- rfc =RandomForestRegressor(random_state=i)
- score_5cv =cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
- score_5cv_all.append(score_5cv)
- pass
- score_max_5cv = max(score_5cv_all)
- random_state_5cv = range(0, 200)[score_5cv_all.index(max(score_5cv_all))] # 5cv最大得分对应的随机种子
- print("最大5cv得分:{}".format(score_max_5cv),
- "random_5cv:{}".format(random_state_5cv))
- # 筛选随机树数目
- score_5cv_all = []
- for i in range(1, 400, 1):
- rfc = RandomForestRegressor(n_estimators=i,
- random_state=random_state_5cv)
- score_5cv = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
- score_5cv_all.append(score_5cv)
- pass
- score_max_5cv = max(score_5cv_all)
- n_est_5cv = range(1,400)[score_5cv_all.index(score_max_5cv)] # 5cv最大得分对应的树数目
- print("最大5cv得分:{}".format(score_max_5cv),
- "n_est_5cv:{}".format(n_est_5cv)) # 5cv最大得分对应的树数目??
- score_test_all = []
- # 筛选最大深度
- score_5cv_all = []
- for i in range(1, 300, 1):
- rfc = RandomForestRegressor(n_estimators=n_est_5cv
- , random_state=random_state_5cv
- , max_depth=i)
- score_5cv = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
- score_5cv_all.append(score_5cv)
- pass
- score_max_5cv = max(score_5cv_all)
- max_depth_5cv = range(1,300)[score_5cv_all.index(score_max_5cv)]
- print(
- "最大5cv得分:{}".format(score_max_5cv),
- "max_depth_5cv:{}".format(max_depth_5cv))
- # 确定参数进行训练
- rfc = RandomForestRegressor(n_estimators=n_est_5cv,random_state=random_state_5cv,max_depth=max_depth_5cv)
- CV_score = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
- CV_predictions = cross_val_predict(rfc, Xtrain, Ytrain, cv=5)
- rmse1 = np.sqrt(mean_squared_error(Ytrain,CV_predictions))
- regressor = rfc.fit(Xtrain, Ytrain)
- test_predictions = regressor.predict(Xtest)
- score_test = regressor.score(Xtest,Ytest)
- rmse2 = np.sqrt(mean_squared_error(Ytest,test_predictions))
- print("5cv:",CV_score)
- print("rmse_5CV",rmse1)
- print("test:",score_test)
- print("rmse_test",rmse2)
- # 保存训练好的模型
- custom_path='model_optimize\pkl' # 模型保存路径
- prefix='rf_model_' # 模型文件名前缀
- save_model(rfc, custom_path, prefix)
|