routes.py 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730
  1. import sqlite3
  2. from io import BytesIO
  3. import pickle
  4. from flask import Blueprint, request, jsonify, current_app, send_file
  5. from werkzeug.security import check_password_hash, generate_password_hash
  6. from werkzeug.utils import secure_filename
  7. from .model import predict, train_and_save_model, calculate_model_score
  8. import pandas as pd
  9. from . import db # 从 app 包导入 db 实例
  10. from sqlalchemy.engine.reflection import Inspector
  11. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  12. import os
  13. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  14. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  15. predict_to_Q, Q_to_t_ha, create_kriging
  16. from sqlalchemy.orm import sessionmaker
  17. import logging
  18. from sqlalchemy import text, select, MetaData, Table, func
  19. from .tasks import train_model_task
  20. from datetime import datetime
  21. from sklearn.metrics import r2_score
  22. # 配置日志
  23. logging.basicConfig(level=logging.DEBUG)
  24. logger = logging.getLogger(__name__)
  25. # 创建蓝图 (Blueprint),用于分离路由
  26. bp = Blueprint('routes', __name__)
  27. # 密码加密
  28. def hash_password(password):
  29. return generate_password_hash(password)
  30. def get_db():
  31. """ 获取数据库连接 """
  32. return sqlite3.connect(current_app.config['DATABASE'])
  33. # 添加一个新的辅助函数来检查数据集大小并触发训练
  34. def check_and_trigger_training(session, dataset_type, dataset_df):
  35. """
  36. 检查当前数据集大小是否跨越新的阈值点并触发训练
  37. Args:
  38. session: 数据库会话
  39. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  40. dataset_df: 数据集 DataFrame
  41. Returns:
  42. tuple: (是否触发训练, 任务ID)
  43. """
  44. try:
  45. # 根据数据集类型选择表
  46. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  47. # 获取当前记录数
  48. current_count = session.query(func.count()).select_from(table).scalar()
  49. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  50. new_records = len(dataset_df) # 需要从上层函数传入
  51. # 计算新增数据前的记录数
  52. previous_count = current_count - new_records
  53. # 设置阈值
  54. THRESHOLD = current_app.config['THRESHOLD']
  55. # 计算上一个阈值点(基于新增前的数据量)
  56. last_threshold = previous_count // THRESHOLD * THRESHOLD
  57. # 计算当前所在阈值点
  58. current_threshold = current_count // THRESHOLD * THRESHOLD
  59. # 检查是否跨越了新的阈值点
  60. if current_threshold > last_threshold and current_count >= THRESHOLD:
  61. # 触发异步训练任务
  62. task = train_model_task.delay(
  63. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  64. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  65. model_description=f'Auto trained model at {current_threshold} records threshold',
  66. data_type=dataset_type
  67. )
  68. return True, task.id
  69. return False, None
  70. except Exception as e:
  71. logging.error(f"检查并触发训练失败: {str(e)}")
  72. return False, None
  73. @bp.route('/upload-dataset', methods=['POST'])
  74. def upload_dataset():
  75. # 创建 session
  76. Session = sessionmaker(bind=db.engine)
  77. session = Session()
  78. try:
  79. if 'file' not in request.files:
  80. return jsonify({'error': 'No file part'}), 400
  81. file = request.files['file']
  82. if file.filename == '' or not allowed_file(file.filename):
  83. return jsonify({'error': 'No selected file or invalid file type'}), 400
  84. dataset_name = request.form.get('dataset_name')
  85. dataset_description = request.form.get('dataset_description', 'No description provided')
  86. dataset_type = request.form.get('dataset_type')
  87. if not dataset_type:
  88. return jsonify({'error': 'Dataset type is required'}), 400
  89. new_dataset = Datasets(
  90. Dataset_name=dataset_name,
  91. Dataset_description=dataset_description,
  92. Row_count=0,
  93. Status='Datasets_upgraded',
  94. Dataset_type=dataset_type,
  95. Uploaded_at=datetime.now()
  96. )
  97. session.add(new_dataset)
  98. session.commit()
  99. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  100. upload_folder = current_app.config['UPLOAD_FOLDER']
  101. file_path = os.path.join(upload_folder, unique_filename)
  102. file.save(file_path)
  103. dataset_df = pd.read_excel(file_path)
  104. new_dataset.Row_count = len(dataset_df)
  105. new_dataset.Status = 'excel_file_saved success'
  106. session.commit()
  107. # 处理列名
  108. dataset_df = clean_column_names(dataset_df)
  109. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  110. column_types = infer_column_types(dataset_df)
  111. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  112. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  113. # 根据 dataset_type 决定插入到哪个已有表
  114. if dataset_type == 'reduce':
  115. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  116. elif dataset_type == 'reflux':
  117. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  118. session.commit()
  119. # 在完成数据插入后,检查是否需要触发训练
  120. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  121. response_data = {
  122. 'message': f'Dataset {dataset_name} uploaded successfully!',
  123. 'dataset_id': new_dataset.Dataset_ID,
  124. 'filename': unique_filename,
  125. 'training_triggered': training_triggered
  126. }
  127. if training_triggered:
  128. response_data['task_id'] = task_id
  129. response_data['message'] += ' Auto-training has been triggered.'
  130. return jsonify(response_data), 201
  131. except Exception as e:
  132. session.rollback()
  133. logging.error('Failed to process the dataset upload:', exc_info=True)
  134. return jsonify({'error': str(e)}), 500
  135. finally:
  136. # 确保 session 总是被关闭
  137. if session:
  138. session.close()
  139. @bp.route('/train-and-save-model', methods=['POST'])
  140. def train_and_save_model_endpoint():
  141. # 创建 sessionmaker 实例
  142. Session = sessionmaker(bind=db.engine)
  143. session = Session()
  144. data = request.get_json()
  145. # 从请求中解析参数
  146. model_type = data.get('model_type')
  147. model_name = data.get('model_name')
  148. model_description = data.get('model_description')
  149. data_type = data.get('data_type')
  150. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  151. try:
  152. # 调用训练和保存模型的函数
  153. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  154. model_id = result[1] if result else None
  155. # 计算模型评分
  156. if model_id:
  157. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  158. if model_info:
  159. score = calculate_model_score(model_info)
  160. # 更新模型评分
  161. model_info.Performance_score = score
  162. session.commit()
  163. result = {'model_id': model_id, 'model_score': score}
  164. # 返回成功响应
  165. return jsonify({
  166. 'message': 'Model trained and saved successfully',
  167. 'result': result
  168. }), 200
  169. except Exception as e:
  170. session.rollback()
  171. logging.error('Failed to process the model training:', exc_info=True)
  172. return jsonify({
  173. 'error': 'Failed to train and save model',
  174. 'message': str(e)
  175. }), 500
  176. finally:
  177. session.close()
  178. @bp.route('/predict', methods=['POST'])
  179. def predict_route():
  180. # 创建 sessionmaker 实例
  181. Session = sessionmaker(bind=db.engine)
  182. session = Session()
  183. try:
  184. data = request.get_json()
  185. model_id = data.get('model_id') # 提取模型名称
  186. parameters = data.get('parameters', {}) # 提取所有变量
  187. # 根据model_id获取模型Data_type
  188. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  189. if not model_info:
  190. return jsonify({'error': 'Model not found'}), 404
  191. data_type = model_info.Data_type
  192. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  193. # 如果为reduce,则不需要传入target_ph
  194. if data_type == 'reduce':
  195. # 获取传入的init_ph、target_ph参数
  196. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  197. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  198. # 从输入数据中删除'target_pH'列
  199. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  200. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  201. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  202. if data_type == 'reduce':
  203. predictions = predictions[0]
  204. # 将预测结果转换为Q
  205. Q = predict_to_Q(predictions, init_ph, target_ph)
  206. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  207. print(predictions)
  208. return jsonify({'result': predictions}), 200
  209. except Exception as e:
  210. logging.error('Failed to predict:', exc_info=True)
  211. return jsonify({'error': str(e)}), 400
  212. # 为指定模型计算评分Performance_score,需要提供model_id
  213. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  214. def score_model(model_id):
  215. # 创建 sessionmaker 实例
  216. Session = sessionmaker(bind=db.engine)
  217. session = Session()
  218. try:
  219. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  220. if not model_info:
  221. return jsonify({'error': 'Model not found'}), 404
  222. # 计算模型评分
  223. score = calculate_model_score(model_info)
  224. # 更新模型记录中的评分
  225. model_info.Performance_score = score
  226. session.commit()
  227. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  228. except Exception as e:
  229. logging.error('Failed to process the dataset upload:', exc_info=True)
  230. return jsonify({'error': str(e)}), 400
  231. finally:
  232. session.close()
  233. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  234. def delete_dataset_endpoint(dataset_id):
  235. """
  236. 删除数据集的API接口
  237. @param dataset_id: 要删除的数据集ID
  238. @return: JSON响应
  239. """
  240. # 创建 sessionmaker 实例
  241. Session = sessionmaker(bind=db.engine)
  242. session = Session()
  243. try:
  244. # 查询数据集
  245. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  246. if not dataset:
  247. return jsonify({'error': '未找到数据集'}), 404
  248. # 检查是否有模型使用了该数据集
  249. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  250. if models_using_dataset:
  251. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  252. return jsonify({
  253. 'error': '无法删除数据集,因为以下模型正在使用它',
  254. 'models': models_info
  255. }), 400
  256. # 删除Excel文件
  257. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  258. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  259. if os.path.exists(file_path):
  260. try:
  261. os.remove(file_path)
  262. except OSError as e:
  263. logger.error(f'删除文件失败: {str(e)}')
  264. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  265. # 删除数据表
  266. table_name = f"dataset_{dataset.Dataset_ID}"
  267. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  268. # 删除数据集记录
  269. session.delete(dataset)
  270. session.commit()
  271. return jsonify({
  272. 'message': '数据集删除成功',
  273. 'deleted_files': [filename]
  274. }), 200
  275. except Exception as e:
  276. session.rollback()
  277. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  278. return jsonify({'error': str(e)}), 500
  279. finally:
  280. session.close()
  281. @bp.route('/tables', methods=['GET'])
  282. def list_tables():
  283. engine = db.engine # 使用 db 实例的 engine
  284. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  285. table_names = inspector.get_table_names() # 获取所有表名
  286. return jsonify(table_names) # 以 JSON 形式返回表名列表
  287. @bp.route('/models/<int:model_id>', methods=['GET'])
  288. def get_model(model_id):
  289. """
  290. 获取单个模型信息的API接口
  291. @param model_id: 模型ID
  292. @return: JSON响应
  293. """
  294. Session = sessionmaker(bind=db.engine)
  295. session = Session()
  296. try:
  297. model = session.query(Models).filter_by(ModelID=model_id).first()
  298. if model:
  299. return jsonify({
  300. 'ModelID': model.ModelID,
  301. 'Model_name': model.Model_name,
  302. 'Model_type': model.Model_type,
  303. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  304. 'Description': model.Description,
  305. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  306. 'Data_type': model.Data_type
  307. })
  308. else:
  309. return jsonify({'message': '未找到模型'}), 404
  310. except Exception as e:
  311. logger.error(f'获取模型信息失败: {str(e)}')
  312. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  313. finally:
  314. session.close()
  315. @bp.route('/models', methods=['GET'])
  316. def get_all_models():
  317. """
  318. 获取所有模型信息的API接口
  319. @return: JSON响应
  320. """
  321. Session = sessionmaker(bind=db.engine)
  322. session = Session()
  323. try:
  324. models = session.query(Models).all()
  325. if models:
  326. result = [
  327. {
  328. 'ModelID': model.ModelID,
  329. 'Model_name': model.Model_name,
  330. 'Model_type': model.Model_type,
  331. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  332. 'Description': model.Description,
  333. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  334. 'Data_type': model.Data_type
  335. }
  336. for model in models
  337. ]
  338. return jsonify(result)
  339. else:
  340. return jsonify({'message': '未找到任何模型'}), 404
  341. except Exception as e:
  342. logger.error(f'获取所有模型信息失败: {str(e)}')
  343. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  344. finally:
  345. session.close()
  346. @bp.route('/model-parameters', methods=['GET'])
  347. def get_all_model_parameters():
  348. """
  349. 获取所有模型参数的API接口
  350. @return: JSON响应
  351. """
  352. Session = sessionmaker(bind=db.engine)
  353. session = Session()
  354. try:
  355. parameters = session.query(ModelParameters).all()
  356. if parameters:
  357. result = [
  358. {
  359. 'ParamID': param.ParamID,
  360. 'ModelID': param.ModelID,
  361. 'ParamName': param.ParamName,
  362. 'ParamValue': param.ParamValue
  363. }
  364. for param in parameters
  365. ]
  366. return jsonify(result)
  367. else:
  368. return jsonify({'message': '未找到任何参数'}), 404
  369. except Exception as e:
  370. logger.error(f'获取所有模型参数失败: {str(e)}')
  371. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  372. finally:
  373. session.close()
  374. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  375. def get_model_parameters(model_id):
  376. try:
  377. model = Models.query.filter_by(ModelID=model_id).first()
  378. if model:
  379. # 获取该模型的所有参数
  380. parameters = [
  381. {
  382. 'ParamID': param.ParamID,
  383. 'ParamName': param.ParamName,
  384. 'ParamValue': param.ParamValue
  385. }
  386. for param in model.parameters
  387. ]
  388. # 返回模型参数信息
  389. return jsonify({
  390. 'ModelID': model.ModelID,
  391. 'ModelName': model.ModelName,
  392. 'ModelType': model.ModelType,
  393. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  394. 'Description': model.Description,
  395. 'Parameters': parameters
  396. })
  397. else:
  398. return jsonify({'message': 'Model not found'}), 404
  399. except Exception as e:
  400. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  401. # 定义添加数据库记录的 API 接口
  402. @bp.route('/add_item', methods=['POST'])
  403. def add_item():
  404. """
  405. 接收 JSON 格式的请求体,包含表名和要插入的数据。
  406. 尝试将数据插入到指定的表中,并进行字段查重。
  407. :return:
  408. """
  409. try:
  410. # 确保请求体是 JSON 格式
  411. data = request.get_json()
  412. if not data:
  413. raise ValueError("No JSON data provided")
  414. table_name = data.get('table')
  415. item_data = data.get('item')
  416. if not table_name or not item_data:
  417. return jsonify({'error': 'Missing table name or item data'}), 400
  418. # 定义各个表的字段查重规则
  419. duplicate_check_rules = {
  420. 'users': ['email', 'username'],
  421. 'products': ['product_code'],
  422. 'current_reduce': [ 'Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
  423. 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
  424. # 其他表和规则
  425. }
  426. # 获取该表的查重字段
  427. duplicate_columns = duplicate_check_rules.get(table_name)
  428. if not duplicate_columns:
  429. return jsonify({'error': 'No duplicate check rule for this table'}), 400
  430. # 动态构建查询条件,逐一检查是否有重复数据
  431. condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
  432. duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
  433. result = db.session.execute(text(duplicate_query), item_data).fetchone()
  434. if result:
  435. return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
  436. # 动态构建 SQL 语句,进行插入操作
  437. columns = ', '.join(item_data.keys())
  438. placeholders = ', '.join([f":{key}" for key in item_data.keys()])
  439. sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
  440. # 直接执行插入操作,无需显式的事务管理
  441. db.session.execute(text(sql), item_data)
  442. # 提交事务
  443. db.session.commit()
  444. # 返回成功响应
  445. return jsonify({'success': True, 'message': 'Item added successfully'}), 201
  446. except ValueError as e:
  447. return jsonify({'error': str(e)}), 400
  448. except KeyError as e:
  449. return jsonify({'error': f'Missing data field: {e}'}), 400
  450. except sqlite3.IntegrityError as e:
  451. return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
  452. except sqlite3.Error as e:
  453. return jsonify({'error': '数据库错误', 'details': str(e)}), 500
  454. @bp.route('/delete_item', methods=['POST'])
  455. def delete_item():
  456. """
  457. 删除数据库记录的 API 接口
  458. """
  459. data = request.get_json()
  460. table_name = data.get('table')
  461. condition = data.get('condition')
  462. # 检查表名和条件是否提供
  463. if not table_name or not condition:
  464. return jsonify({
  465. "success": False,
  466. "message": "缺少表名或条件参数"
  467. }), 400
  468. # 尝试从条件字符串中解析键和值
  469. try:
  470. key, value = condition.split('=')
  471. key = key.strip() # 去除多余的空格
  472. value = value.strip().strip("'\"") # 去除多余的空格和引号
  473. except ValueError:
  474. return jsonify({
  475. "success": False,
  476. "message": "条件格式错误,应为 'key=value'"
  477. }), 400
  478. # 准备 SQL 删除语句
  479. sql = f"DELETE FROM {table_name} WHERE {key} = :value"
  480. try:
  481. # 使用 SQLAlchemy 执行删除
  482. with db.session.begin():
  483. result = db.session.execute(text(sql), {"value": value})
  484. # 检查是否有记录被删除
  485. if result.rowcount == 0:
  486. return jsonify({
  487. "success": False,
  488. "message": "未找到符合条件的记录"
  489. }), 404
  490. return jsonify({
  491. "success": True,
  492. "message": "记录删除成功"
  493. }), 200
  494. except Exception as e:
  495. return jsonify({
  496. "success": False,
  497. "message": f"删除失败: {e}"
  498. }), 500
  499. # 定义修改数据库记录的 API 接口
  500. @bp.route('/update_item', methods=['PUT'])
  501. def update_record():
  502. """
  503. 接收 JSON 格式的请求体,包含表名和更新的数据。
  504. 尝试更新指定的记录。
  505. """
  506. data = request.get_json()
  507. # 检查必要的数据是否提供
  508. if not data or 'table' not in data or 'item' not in data:
  509. return jsonify({
  510. "success": False,
  511. "message": "请求数据不完整"
  512. }), 400
  513. table_name = data['table']
  514. item = data['item']
  515. # 假设 item 的第一个键是 ID
  516. id_key = next(iter(item.keys())) # 获取第一个键
  517. record_id = item.get(id_key)
  518. if not record_id:
  519. return jsonify({
  520. "success": False,
  521. "message": "缺少记录 ID"
  522. }), 400
  523. # 获取更新的字段和值
  524. updates = {key: value for key, value in item.items() if key != id_key}
  525. if not updates:
  526. return jsonify({
  527. "success": False,
  528. "message": "没有提供需要更新的字段"
  529. }), 400
  530. # 动态构建 SQL
  531. set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
  532. sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
  533. # 添加 ID 到参数
  534. updates['id_value'] = record_id
  535. try:
  536. # 使用 SQLAlchemy 执行更新
  537. with db.session.begin():
  538. result = db.session.execute(text(sql), updates)
  539. # 检查是否有更新的记录
  540. if result.rowcount == 0:
  541. return jsonify({
  542. "success": False,
  543. "message": "未找到要更新的记录"
  544. }), 404
  545. return jsonify({
  546. "success": True,
  547. "message": "数据更新成功"
  548. }), 200
  549. except Exception as e:
  550. # 捕获所有异常并返回
  551. return jsonify({
  552. "success": False,
  553. "message": f"更新失败: {str(e)}"
  554. }), 500
  555. # 定义查询数据库记录的 API 接口
  556. @bp.route('/search/record', methods=['GET'])
  557. def sql_search():
  558. """
  559. 接收 JSON 格式的请求体,包含表名和要查询的 ID。
  560. 尝试查询指定 ID 的记录并返回结果。
  561. :return:
  562. """
  563. try:
  564. data = request.get_json()
  565. # 表名
  566. sql_table = data['table']
  567. # 要搜索的 ID
  568. Id = data['id']
  569. # 连接到数据库
  570. cur = db.cursor()
  571. # 构造查询语句
  572. sql = f"SELECT * FROM {sql_table} WHERE id = ?"
  573. # 执行查询
  574. cur.execute(sql, (Id,))
  575. # 获取查询结果
  576. rows = cur.fetchall()
  577. column_names = [desc[0] for desc in cur.description]
  578. # 检查是否有结果
  579. if not rows:
  580. return jsonify({'error': '未查找到对应数据。'}), 400
  581. # 构造响应数据
  582. results = []
  583. for row in rows:
  584. result = {column_names[i]: row[i] for i in range(len(row))}
  585. results.append(result)
  586. # 关闭游标和数据库连接
  587. cur.close()
  588. db.close()
  589. # 返回 JSON 响应
  590. return jsonify(results), 200
  591. except sqlite3.Error as e:
  592. # 如果发生数据库错误,返回错误信息
  593. return jsonify({'error': str(e)}), 400
  594. except KeyError as e:
  595. # 如果请求数据中缺少必要的键,返回错误信息
  596. return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
  597. # 定义提供数据库列表,用于展示表格的 API 接口
  598. @bp.route('/table', methods=['POST'])
  599. def get_table():
  600. data = request.get_json()
  601. table_name = data.get('table')
  602. if not table_name:
  603. return jsonify({'error': '需要表名'}), 400
  604. try:
  605. # 创建 sessionmaker 实例
  606. Session = sessionmaker(bind=db.engine)
  607. session = Session()
  608. # 动态获取表的元数据
  609. metadata = MetaData()
  610. table = Table(table_name, metadata, autoload_with=db.engine)
  611. # 从数据库中查询所有记录
  612. query = select(table)
  613. result = session.execute(query).fetchall()
  614. # 将结果转换为列表字典形式
  615. rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
  616. # 获取列名
  617. headers = [column.name for column in table.columns]
  618. return jsonify(rows=rows, headers=headers), 200
  619. except Exception as e:
  620. return jsonify({'error': str(e)}), 400
  621. finally:
  622. # 关闭 session
  623. session.close()
  624. @bp.route('/train-model-async', methods=['POST'])
  625. def train_model_async():
  626. """
  627. 异步训练模型的API接口
  628. """
  629. try:
  630. data = request.get_json()
  631. # 从请求中获取参数
  632. model_type = data.get('model_type')
  633. model_name = data.get('model_name')
  634. model_description = data.get('model_description')
  635. data_type = data.get('data_type')
  636. dataset_id = data.get('dataset_id', None)
  637. # 验证必要参数
  638. if not all([model_type, model_name, data_type]):
  639. return jsonify({
  640. 'error': 'Missing required parameters'
  641. }), 400
  642. # 如果提供了dataset_id,验证数据集是否存在
  643. if dataset_id:
  644. Session = sessionmaker(bind=db.engine)
  645. session = Session()
  646. try:
  647. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  648. if not dataset:
  649. return jsonify({
  650. 'error': f'Dataset with ID {dataset_id} not found'
  651. }), 404
  652. finally:
  653. session.close()
  654. # 启动异步任务
  655. task = train_model_task.delay(
  656. model_type=model_type,
  657. model_name=model_name,
  658. model_description=model_description,
  659. data_type=data_type,
  660. dataset_id=dataset_id
  661. )
  662. # 返回任务ID
  663. return jsonify({
  664. 'task_id': task.id,
  665. 'message': 'Model training started'
  666. }), 202
  667. except Exception as e:
  668. logging.error('Failed to start async training task:', exc_info=True)
  669. return jsonify({
  670. 'error': str(e)
  671. }), 500
  672. @bp.route('/task-status/<task_id>', methods=['GET'])
  673. def get_task_status(task_id):
  674. """
  675. 获取异步任务状态的API接口
  676. """
  677. try:
  678. task = train_model_task.AsyncResult(task_id)
  679. if task.state == 'PENDING':
  680. response = {
  681. 'state': task.state,
  682. 'status': 'Task is waiting for execution'
  683. }
  684. elif task.state == 'FAILURE':
  685. response = {
  686. 'state': task.state,
  687. 'status': 'Task failed',
  688. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  689. }
  690. elif task.state == 'SUCCESS':
  691. response = {
  692. 'state': task.state,
  693. 'status': 'Task completed successfully',
  694. 'result': task.get()
  695. }
  696. else:
  697. response = {
  698. 'state': task.state,
  699. 'status': 'Task is in progress'
  700. }
  701. return jsonify(response), 200
  702. except Exception as e:
  703. return jsonify({
  704. 'error': str(e)
  705. }), 500
  706. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  707. def delete_model_route(model_id):
  708. # 将URL参数转换为布尔值
  709. delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
  710. # 调用原始函数
  711. return delete_model(model_id, delete_dataset=delete_dataset_param)
  712. def delete_model(model_id, delete_dataset=False):
  713. """
  714. 删除指定模型的API接口
  715. @param model_id: 要删除的模型ID
  716. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  717. @return: JSON响应
  718. """
  719. Session = sessionmaker(bind=db.engine)
  720. session = Session()
  721. try:
  722. # 查询模型信息
  723. model = session.query(Models).filter_by(ModelID=model_id).first()
  724. if not model:
  725. return jsonify({'error': '未找到指定模型'}), 404
  726. dataset_id = model.DatasetID
  727. # 1. 先删除模型记录
  728. session.delete(model)
  729. session.commit()
  730. # 2. 删除模型文件
  731. model_path = model.ModelFilePath
  732. try:
  733. if os.path.exists(model_path):
  734. os.remove(model_path)
  735. else:
  736. # 如果删除文件失败,回滚数据库操作
  737. session.rollback()
  738. logger.warning(f'模型文件不存在: {model_path}')
  739. except OSError as e:
  740. # 如果删除文件失败,回滚数据库操作
  741. session.rollback()
  742. logger.error(f'删除模型文件失败: {str(e)}')
  743. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  744. # 3. 如果需要删除关联的数据集
  745. if delete_dataset and dataset_id:
  746. try:
  747. dataset_response = delete_dataset_endpoint(dataset_id)
  748. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  749. # 如果删除数据集失败,回滚之前的操作
  750. session.rollback()
  751. return jsonify({
  752. 'error': '删除关联数据集失败',
  753. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  754. }), 500
  755. except Exception as e:
  756. session.rollback()
  757. logger.error(f'删除关联数据集失败: {str(e)}')
  758. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  759. response_data = {
  760. 'message': '模型删除成功',
  761. 'deleted_files': [model_path]
  762. }
  763. if delete_dataset:
  764. response_data['dataset_info'] = {
  765. 'dataset_id': dataset_id,
  766. 'message': '关联数据集已删除'
  767. }
  768. return jsonify(response_data), 200
  769. except Exception as e:
  770. session.rollback()
  771. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  772. return jsonify({'error': str(e)}), 500
  773. finally:
  774. session.close()
  775. # 添加一个新的API端点来清空指定数据集
  776. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  777. def clear_dataset(data_type):
  778. """
  779. 清空指定类型的数据集并递增计数
  780. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  781. @return: JSON响应
  782. """
  783. # 创建 sessionmaker 实例
  784. Session = sessionmaker(bind=db.engine)
  785. session = Session()
  786. try:
  787. # 根据数据集类型选择表
  788. if data_type == 'reduce':
  789. table = CurrentReduce
  790. table_name = 'current_reduce'
  791. elif data_type == 'reflux':
  792. table = CurrentReflux
  793. table_name = 'current_reflux'
  794. else:
  795. return jsonify({'error': '无效的数据集类型'}), 400
  796. # 清空表内容
  797. session.query(table).delete()
  798. # 重置自增主键计数器
  799. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  800. session.commit()
  801. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  802. except Exception as e:
  803. session.rollback()
  804. return jsonify({'error': str(e)}), 500
  805. finally:
  806. session.close()
  807. @bp.route('/login', methods=['POST'])
  808. def login_user():
  809. # 获取前端传来的数据
  810. data = request.get_json()
  811. name = data.get('name') # 用户名
  812. password = data.get('password') # 密码
  813. logger.info(f"Login request received: name={name}")
  814. # 检查用户名和密码是否为空
  815. if not name or not password:
  816. logger.warning("用户名和密码不能为空")
  817. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  818. try:
  819. # 查询数据库验证用户名
  820. query = "SELECT * FROM users WHERE name = :name"
  821. conn = get_db()
  822. user = conn.execute(query, {"name": name}).fetchone()
  823. if not user:
  824. logger.warning(f"用户名 '{name}' 不存在")
  825. return jsonify({"success": False, "message": "用户名不存在"}), 400
  826. # 获取数据库中存储的密码(假设密码是哈希存储的)
  827. stored_password = user[2] # 假设密码存储在数据库的第三列
  828. user_id = user[0] # 假设 id 存储在数据库的第一列
  829. # 校验密码是否正确
  830. if check_password_hash(stored_password, password):
  831. logger.info(f"User '{name}' logged in successfully.")
  832. return jsonify({
  833. "success": True,
  834. "message": "登录成功",
  835. "userId": user_id # 返回用户 ID
  836. })
  837. else:
  838. logger.warning(f"Invalid password for user '{name}'")
  839. return jsonify({"success": False, "message": "用户名或密码错误"}), 400
  840. except Exception as e:
  841. # 记录错误日志并返回错误信息
  842. logger.error(f"Error during login: {e}", exc_info=True)
  843. return jsonify({"success": False, "message": "登录失败"}), 500
  844. # 更新用户信息接口
  845. @bp.route('/update_user', methods=['POST'])
  846. def update_user():
  847. # 获取前端传来的数据
  848. data = request.get_json()
  849. # 打印收到的请求数据
  850. current_app.logger.info(f"Received data: {data}")
  851. user_id = data.get('userId') # 用户ID
  852. name = data.get('name') # 用户名
  853. old_password = data.get('oldPassword') # 旧密码
  854. new_password = data.get('newPassword') # 新密码
  855. logger.info(f"Update request received: user_id={user_id}, name={name}")
  856. # 校验传入的用户名和密码是否为空
  857. if not name or not old_password:
  858. logger.warning("用户名和旧密码不能为空")
  859. return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
  860. # 新密码和旧密码不能相同
  861. if new_password and old_password == new_password:
  862. logger.warning(f"新密码与旧密码相同:{name}")
  863. return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
  864. try:
  865. # 查询数据库验证用户ID
  866. query = "SELECT * FROM users WHERE id = :user_id"
  867. conn = get_db()
  868. user = conn.execute(query, {"user_id": user_id}).fetchone()
  869. if not user:
  870. logger.warning(f"用户ID '{user_id}' 不存在")
  871. return jsonify({"success": False, "message": "用户不存在"}), 400
  872. # 获取数据库中存储的密码(假设密码是哈希存储的)
  873. stored_password = user[2] # 假设密码存储在数据库的第三列
  874. # 校验旧密码是否正确
  875. if not check_password_hash(stored_password, old_password):
  876. logger.warning(f"旧密码错误:{name}")
  877. return jsonify({"success": False, "message": "旧密码错误"}), 400
  878. # 如果新密码非空,则更新新密码
  879. if new_password:
  880. hashed_new_password = hash_password(new_password)
  881. update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
  882. conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
  883. conn.commit()
  884. logger.info(f"User ID '{user_id}' password updated successfully.")
  885. # 如果用户名发生更改,则更新用户名
  886. if name != user[1]:
  887. update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
  888. conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
  889. conn.commit()
  890. logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
  891. return jsonify({"success": True, "message": "用户信息更新成功"})
  892. except Exception as e:
  893. # 记录错误日志并返回错误信息
  894. logger.error(f"Error updating user: {e}", exc_info=True)
  895. return jsonify({"success": False, "message": "更新失败"}), 500
  896. # 注册用户
  897. @bp.route('/register', methods=['POST'])
  898. def register_user():
  899. # 获取前端传来的数据
  900. data = request.get_json()
  901. name = data.get('name') # 用户名
  902. password = data.get('password') # 密码
  903. logger.info(f"Register request received: name={name}")
  904. # 检查用户名和密码是否为空
  905. if not name or not password:
  906. logger.warning("用户名和密码不能为空")
  907. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  908. # 动态获取数据库表的列名
  909. columns = get_column_names('users')
  910. logger.info(f"Database columns for 'users' table: {columns}")
  911. # 检查前端传来的数据是否包含数据库表中所有的必填字段
  912. for column in ['name', 'password']:
  913. if column not in columns:
  914. logger.error(f"缺少必填字段:{column}")
  915. return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
  916. # 对密码进行哈希处理
  917. hashed_password = hash_password(password)
  918. logger.info(f"Password hashed for user: {name}")
  919. # 插入到数据库
  920. try:
  921. # 检查用户是否已经存在
  922. query = "SELECT * FROM users WHERE name = :name"
  923. conn = get_db()
  924. user = conn.execute(query, {"name": name}).fetchone()
  925. if user:
  926. logger.warning(f"用户名 '{name}' 已存在")
  927. return jsonify({"success": False, "message": "用户名已存在"}), 400
  928. # 向数据库插入数据
  929. query = "INSERT INTO users (name, password) VALUES (:name, :password)"
  930. conn.execute(query, {"name": name, "password": hashed_password})
  931. conn.commit()
  932. logger.info(f"User '{name}' registered successfully.")
  933. return jsonify({"success": True, "message": "注册成功"})
  934. except Exception as e:
  935. # 记录错误日志并返回错误信息
  936. logger.error(f"Error registering user: {e}", exc_info=True)
  937. return jsonify({"success": False, "message": "注册失败"}), 500
  938. def get_column_names(table_name):
  939. """
  940. 动态获取数据库表的列名。
  941. """
  942. try:
  943. conn = get_db()
  944. query = f"PRAGMA table_info({table_name});"
  945. result = conn.execute(query).fetchall()
  946. conn.close()
  947. return [row[1] for row in result] # 第二列是列名
  948. except Exception as e:
  949. logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
  950. return []
  951. # 导出数据
  952. @bp.route('/export_data', methods=['GET'])
  953. def export_data():
  954. table_name = request.args.get('table')
  955. file_format = request.args.get('format', 'excel').lower()
  956. if not table_name:
  957. return jsonify({'error': '缺少表名参数'}), 400
  958. if not table_name.isidentifier():
  959. return jsonify({'error': '无效的表名'}), 400
  960. try:
  961. conn = get_db()
  962. query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
  963. table_exists = conn.execute(query, (table_name,)).fetchone()
  964. if not table_exists:
  965. return jsonify({'error': f"表 {table_name} 不存在"}), 404
  966. query = f"SELECT * FROM {table_name};"
  967. df = pd.read_sql(query, conn)
  968. output = BytesIO()
  969. if file_format == 'csv':
  970. df.to_csv(output, index=False, encoding='utf-8')
  971. output.seek(0)
  972. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
  973. elif file_format == 'excel':
  974. df.to_excel(output, index=False, engine='openpyxl')
  975. output.seek(0)
  976. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
  977. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  978. else:
  979. return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
  980. except Exception as e:
  981. logger.error(f"Error in export_data: {e}", exc_info=True)
  982. return jsonify({'error': str(e)}), 500
  983. # 导入数据接口
  984. @bp.route('/import_data', methods=['POST'])
  985. def import_data():
  986. logger.debug("Import data endpoint accessed.")
  987. if 'file' not in request.files:
  988. logger.error("No file in request.")
  989. return jsonify({'success': False, 'message': '文件缺失'}), 400
  990. file = request.files['file']
  991. table_name = request.form.get('table')
  992. if not table_name:
  993. logger.error("Missing table name parameter.")
  994. return jsonify({'success': False, 'message': '缺少表名参数'}), 400
  995. if file.filename == '':
  996. logger.error("No file selected.")
  997. return jsonify({'success': False, 'message': '未选择文件'}), 400
  998. try:
  999. # 保存文件到临时路径
  1000. temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
  1001. file.save(temp_path)
  1002. logger.debug(f"File saved to temporary path: {temp_path}")
  1003. # 根据文件类型读取文件
  1004. if file.filename.endswith('.xlsx'):
  1005. df = pd.read_excel(temp_path)
  1006. elif file.filename.endswith('.csv'):
  1007. df = pd.read_csv(temp_path)
  1008. else:
  1009. logger.error("Unsupported file format.")
  1010. return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
  1011. # 获取数据库列名
  1012. db_columns = get_column_names(table_name)
  1013. if 'id' in db_columns:
  1014. db_columns.remove('id') # 假设 id 列是自增的,不需要处理
  1015. if not set(db_columns).issubset(set(df.columns)):
  1016. logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
  1017. return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
  1018. # 清洗数据并删除空值行
  1019. df_cleaned = df[db_columns].dropna()
  1020. # 统一数据类型,避免 int 和 float 合并问题
  1021. df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
  1022. # 获取现有的数据
  1023. conn = get_db()
  1024. with conn:
  1025. existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
  1026. # 查找重复数据
  1027. duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
  1028. # 如果有重复数据,删除它们
  1029. df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
  1030. logger.warning(f"Duplicate data detected and removed: {duplicates}")
  1031. # 获取导入前后的数据量
  1032. total_data = len(df_cleaned) + len(duplicates)
  1033. new_data = len(df_cleaned)
  1034. duplicate_data = len(duplicates)
  1035. # 导入不重复的数据
  1036. df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
  1037. logger.debug(f"Imported {new_data} new records into the database.")
  1038. # 删除临时文件
  1039. os.remove(temp_path)
  1040. logger.debug(f"Temporary file removed: {temp_path}")
  1041. # 返回结果
  1042. return jsonify({
  1043. 'success': True,
  1044. 'message': '数据导入成功',
  1045. 'total_data': total_data,
  1046. 'new_data': new_data,
  1047. 'duplicate_data': duplicate_data
  1048. }), 200
  1049. except Exception as e:
  1050. logger.error(f"Import failed: {e}", exc_info=True)
  1051. return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
  1052. # 模板下载接口
  1053. @bp.route('/download_template', methods=['GET'])
  1054. def download_template():
  1055. """
  1056. 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
  1057. """
  1058. table_name = request.args.get('table')
  1059. if not table_name:
  1060. return jsonify({'error': '表名参数缺失'}), 400
  1061. columns = get_column_names(table_name)
  1062. if not columns:
  1063. return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
  1064. # 不包括 ID 列
  1065. if 'id' in columns:
  1066. columns.remove('id')
  1067. df = pd.DataFrame(columns=columns)
  1068. file_format = request.args.get('format', 'excel').lower()
  1069. try:
  1070. if file_format == 'csv':
  1071. output = BytesIO()
  1072. df.to_csv(output, index=False, encoding='utf-8')
  1073. output.seek(0)
  1074. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
  1075. mimetype='text/csv')
  1076. else:
  1077. output = BytesIO()
  1078. df.to_excel(output, index=False, engine='openpyxl')
  1079. output.seek(0)
  1080. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
  1081. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  1082. except Exception as e:
  1083. logger.error(f"Failed to generate template: {e}", exc_info=True)
  1084. return jsonify({'error': '生成模板文件失败'}), 500
  1085. @bp.route('/update-threshold', methods=['POST'])
  1086. def update_threshold():
  1087. """
  1088. 更新训练阈值的API接口
  1089. @body_param threshold: 新的阈值值(整数)
  1090. @return: JSON响应
  1091. """
  1092. try:
  1093. data = request.get_json()
  1094. new_threshold = data.get('threshold')
  1095. # 验证新阈值
  1096. if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
  1097. return jsonify({
  1098. 'error': '无效的阈值值,必须为正数'
  1099. }), 400
  1100. # 更新当前应用的阈值配置
  1101. current_app.config['THRESHOLD'] = int(new_threshold)
  1102. return jsonify({
  1103. 'success': True,
  1104. 'message': f'阈值已更新为 {new_threshold}',
  1105. 'new_threshold': new_threshold
  1106. })
  1107. except Exception as e:
  1108. logging.error(f"更新阈值失败: {str(e)}")
  1109. return jsonify({
  1110. 'error': f'更新阈值失败: {str(e)}'
  1111. }), 500
  1112. @bp.route('/get-threshold', methods=['GET'])
  1113. def get_threshold():
  1114. """
  1115. 获取当前训练阈值的API接口
  1116. @return: JSON响应
  1117. """
  1118. try:
  1119. current_threshold = current_app.config['THRESHOLD']
  1120. default_threshold = current_app.config['DEFAULT_THRESHOLD']
  1121. return jsonify({
  1122. 'current_threshold': current_threshold,
  1123. 'default_threshold': default_threshold
  1124. })
  1125. except Exception as e:
  1126. logging.error(f"获取阈值失败: {str(e)}")
  1127. return jsonify({
  1128. 'error': f'获取阈值失败: {str(e)}'
  1129. }), 500
  1130. @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
  1131. def set_current_dataset(data_type, dataset_id):
  1132. """
  1133. 将指定数据集设置为current数据集
  1134. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1135. @param dataset_id: 要设置为current的数据集ID
  1136. @return: JSON响应
  1137. """
  1138. Session = sessionmaker(bind=db.engine)
  1139. session = Session()
  1140. try:
  1141. # 验证数据集存在且类型匹配
  1142. dataset = session.query(Datasets)\
  1143. .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
  1144. .first()
  1145. if not dataset:
  1146. return jsonify({
  1147. 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
  1148. }), 404
  1149. # 根据数据类型选择表
  1150. if data_type == 'reduce':
  1151. table = CurrentReduce
  1152. table_name = 'current_reduce'
  1153. elif data_type == 'reflux':
  1154. table = CurrentReflux
  1155. table_name = 'current_reflux'
  1156. else:
  1157. return jsonify({'error': '无效的数据集类型'}), 400
  1158. # 清空current表
  1159. session.query(table).delete()
  1160. # 重置自增主键计数器
  1161. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  1162. # 从指定数据集复制数据到current表
  1163. dataset_table_name = f"dataset_{dataset_id}"
  1164. copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
  1165. session.execute(copy_sql)
  1166. session.commit()
  1167. return jsonify({
  1168. 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
  1169. 'dataset_id': dataset_id,
  1170. 'dataset_name': dataset.Dataset_name,
  1171. 'row_count': dataset.Row_count
  1172. }), 200
  1173. except Exception as e:
  1174. session.rollback()
  1175. logger.error(f'设置current数据集失败: {str(e)}')
  1176. return jsonify({'error': str(e)}), 500
  1177. finally:
  1178. session.close()
  1179. @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
  1180. def get_model_history(data_type):
  1181. """
  1182. 获取模型训练历史数据的API接口
  1183. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1184. @return: JSON响应,包含时间序列的模型性能数据
  1185. """
  1186. Session = sessionmaker(bind=db.engine)
  1187. session = Session()
  1188. try:
  1189. # 查询所有自动生成的数据集,按时间排序
  1190. datasets = session.query(Datasets).filter(
  1191. Datasets.Dataset_type == data_type,
  1192. Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
  1193. ).order_by(Datasets.Uploaded_at).all()
  1194. history_data = []
  1195. for dataset in datasets:
  1196. # 查找对应的自动训练模型
  1197. model = session.query(Models).filter(
  1198. Models.DatasetID == dataset.Dataset_ID,
  1199. Models.Model_name.like(f'auto_trained_{data_type}_%')
  1200. ).first()
  1201. if model and model.Performance_score is not None:
  1202. # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
  1203. created_at = model.Created_at.isoformat() if model.Created_at else None
  1204. history_data.append({
  1205. 'dataset_id': dataset.Dataset_ID,
  1206. 'row_count': dataset.Row_count,
  1207. 'model_id': model.ModelID,
  1208. 'model_name': model.Model_name,
  1209. 'performance_score': float(model.Performance_score),
  1210. 'timestamp': created_at
  1211. })
  1212. # 按时间戳排序
  1213. history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
  1214. # 构建返回数据,分离各个指标序列便于前端绘图
  1215. response_data = {
  1216. 'data_type': data_type,
  1217. 'timestamps': [item['timestamp'] for item in history_data],
  1218. 'row_counts': [item['row_count'] for item in history_data],
  1219. 'performance_scores': [item['performance_score'] for item in history_data],
  1220. 'model_details': history_data # 保留完整数据供前端使用
  1221. }
  1222. return jsonify(response_data), 200
  1223. except Exception as e:
  1224. logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
  1225. return jsonify({'error': str(e)}), 500
  1226. finally:
  1227. session.close()
  1228. @bp.route('/batch-delete-datasets', methods=['POST'])
  1229. def batch_delete_datasets():
  1230. """
  1231. 批量删除数据集的API接口
  1232. @body_param dataset_ids: 要删除的数据集ID列表
  1233. @return: JSON响应
  1234. """
  1235. try:
  1236. data = request.get_json()
  1237. dataset_ids = data.get('dataset_ids', [])
  1238. if not dataset_ids:
  1239. return jsonify({'error': '未提供数据集ID列表'}), 400
  1240. results = {
  1241. 'success': [],
  1242. 'failed': [],
  1243. 'protected': [] # 被模型使用的数据集
  1244. }
  1245. for dataset_id in dataset_ids:
  1246. try:
  1247. # 调用单个删除接口
  1248. response = delete_dataset_endpoint(dataset_id)
  1249. # 解析响应
  1250. if response[1] == 200:
  1251. results['success'].append(dataset_id)
  1252. elif response[1] == 400 and 'models' in response[0].json:
  1253. # 数据集被模型保护
  1254. results['protected'].append({
  1255. 'id': dataset_id,
  1256. 'models': response[0].json['models']
  1257. })
  1258. else:
  1259. results['failed'].append({
  1260. 'id': dataset_id,
  1261. 'reason': response[0].json.get('error', '删除失败')
  1262. })
  1263. except Exception as e:
  1264. logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
  1265. results['failed'].append({
  1266. 'id': dataset_id,
  1267. 'reason': str(e)
  1268. })
  1269. # 构建响应消息
  1270. message = f"成功删除 {len(results['success'])} 个数据集"
  1271. if results['protected']:
  1272. message += f", {len(results['protected'])} 个数据集被保护"
  1273. if results['failed']:
  1274. message += f", {len(results['failed'])} 个数据集删除失败"
  1275. return jsonify({
  1276. 'message': message,
  1277. 'results': results
  1278. }), 200
  1279. except Exception as e:
  1280. logger.error(f'批量删除数据集失败: {str(e)}')
  1281. return jsonify({'error': str(e)}), 500
  1282. @bp.route('/batch-delete-models', methods=['POST'])
  1283. def batch_delete_models():
  1284. """
  1285. 批量删除模型的API接口
  1286. @body_param model_ids: 要删除的模型ID列表
  1287. @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
  1288. @return: JSON响应
  1289. """
  1290. try:
  1291. data = request.get_json()
  1292. model_ids = data.get('model_ids', [])
  1293. delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
  1294. if not model_ids:
  1295. return jsonify({'error': '未提供模型ID列表'}), 400
  1296. results = {
  1297. 'success': [],
  1298. 'failed': [],
  1299. 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
  1300. }
  1301. for model_id in model_ids:
  1302. try:
  1303. # 调用单个删除接口
  1304. response = delete_model(model_id, delete_dataset=delete_datasets)
  1305. # 解析响应
  1306. if response[1] == 200:
  1307. results['success'].append(model_id)
  1308. # 如果删除了关联数据集,记录数据集ID
  1309. if 'dataset_info' in response[0].json:
  1310. results['datasets_deleted'].append(
  1311. response[0].json['dataset_info']['dataset_id']
  1312. )
  1313. else:
  1314. results['failed'].append({
  1315. 'id': model_id,
  1316. 'reason': response[0].json.get('error', '删除失败')
  1317. })
  1318. except Exception as e:
  1319. logger.error(f'删除模型 {model_id} 失败: {str(e)}')
  1320. results['failed'].append({
  1321. 'id': model_id,
  1322. 'reason': str(e)
  1323. })
  1324. # 构建响应消息
  1325. message = f"成功删除 {len(results['success'])} 个模型"
  1326. if results['datasets_deleted']:
  1327. message += f", {len(results['datasets_deleted'])} 个关联数据集"
  1328. if results['failed']:
  1329. message += f", {len(results['failed'])} 个模型删除失败"
  1330. return jsonify({
  1331. 'message': message,
  1332. 'results': results
  1333. }), 200
  1334. except Exception as e:
  1335. logger.error(f'批量删除模型失败: {str(e)}')
  1336. return jsonify({'error': str(e)}), 500
  1337. @bp.route('/kriging_interpolation', methods=['POST'])
  1338. def kriging_interpolation():
  1339. try:
  1340. data = request.get_json()
  1341. required = ['file_name', 'emission_column', 'points']
  1342. if not all(k in data for k in required):
  1343. return jsonify({"error": "Missing parameters"}), 400
  1344. # 添加坐标顺序验证
  1345. points = data['points']
  1346. if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
  1347. return jsonify({"error": "Invalid points format"}), 400
  1348. result = create_kriging(
  1349. data['file_name'],
  1350. data['emission_column'],
  1351. data['points']
  1352. )
  1353. return jsonify(result)
  1354. except Exception as e:
  1355. return jsonify({"error": str(e)}), 500
  1356. @bp.route('/model-scatter-data/<int:model_id>', methods=['GET'])
  1357. def get_model_scatter_data(model_id):
  1358. """
  1359. 获取指定模型的散点图数据(真实值vs预测值)
  1360. @param model_id: 模型ID
  1361. @return: JSON响应,包含散点图数据
  1362. """
  1363. Session = sessionmaker(bind=db.engine)
  1364. session = Session()
  1365. try:
  1366. # 查询模型信息
  1367. model = session.query(Models).filter_by(ModelID=model_id).first()
  1368. if not model:
  1369. return jsonify({'error': '未找到指定模型'}), 404
  1370. # 加载模型
  1371. with open(model.ModelFilePath, 'rb') as f:
  1372. ML_model = pickle.load(f)
  1373. # 根据数据类型加载测试数据
  1374. if model.Data_type == 'reflux':
  1375. X_test = pd.read_csv('uploads/data/X_test_reflux.csv')
  1376. Y_test = pd.read_csv('uploads/data/Y_test_reflux.csv')
  1377. elif model.Data_type == 'reduce':
  1378. X_test = pd.read_csv('uploads/data/X_test_reduce.csv')
  1379. Y_test = pd.read_csv('uploads/data/Y_test_reduce.csv')
  1380. else:
  1381. return jsonify({'error': '不支持的数据类型'}), 400
  1382. # 获取预测值
  1383. y_pred = ML_model.predict(X_test)
  1384. # 生成散点图数据
  1385. scatter_data = [
  1386. [float(true), float(pred)]
  1387. for true, pred in zip(Y_test.iloc[:, 0], y_pred)
  1388. ]
  1389. # 计算R²分数
  1390. r2 = r2_score(Y_test, y_pred)
  1391. # 获取数据范围,用于绘制对角线
  1392. y_min = min(min(Y_test.iloc[:, 0]), min(y_pred))
  1393. y_max = max(max(Y_test.iloc[:, 0]), max(y_pred))
  1394. return jsonify({
  1395. 'scatter_data': scatter_data,
  1396. 'r2_score': float(r2),
  1397. 'y_range': [float(y_min), float(y_max)],
  1398. 'model_name': model.Model_name,
  1399. 'model_type': model.Model_type
  1400. }), 200
  1401. except Exception as e:
  1402. logger.error(f'获取模型散点图数据失败: {str(e)}', exc_info=True)
  1403. return jsonify({'error': f'获取数据失败: {str(e)}'}), 500
  1404. finally:
  1405. session.close()