data_increase.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. # 导入常用包
  2. import os
  3. import pandas as pd
  4. import numpy as np
  5. from PIL import Image
  6. from model_saver import save_model
  7. # 机器学习模型导入
  8. from sklearn.ensemble import RandomForestRegressor
  9. from sklearn.model_selection import train_test_split
  10. from sklearn.metrics import mean_squared_error
  11. from sklearn.ensemble import GradientBoostingRegressor as GBSTR
  12. from sklearn.neighbors import KNeighborsRegressor
  13. from xgboost import XGBRegressor as XGBR
  14. # 导入数据处理函数
  15. from sklearn.preprocessing import StandardScaler
  16. from sklearn.preprocessing import MinMaxScaler
  17. # 导入评分函数
  18. from sklearn.metrics import r2_score
  19. from sklearn.metrics import mean_squared_error
  20. from sklearn.metrics import mean_absolute_error
  21. from sklearn.metrics import accuracy_score
  22. from sklearn.metrics import log_loss
  23. from sklearn.metrics import roc_auc_score
  24. import pickle
  25. from pathlib import Path
  26. # 定义数据集配置
  27. DATASET_CONFIGS = {
  28. 'soil_acid_9features': {
  29. 'file_path': 'model_optimize/data/data_filt.xlsx',
  30. 'x_columns': range(1, 10), # 9个特征(包含delta_ph)
  31. 'y_column': -1, # 105_day_ph
  32. 'feature_names': [
  33. 'organic_matter', # OM g/kg
  34. 'chloride', # CL g/kg
  35. 'cec', # CEC cmol/kg
  36. 'h_concentration', # H+ cmol/kg
  37. 'hn', # HN mg/kg
  38. 'al_concentration', # Al3+ cmol/kg
  39. 'free_alumina', # Free alumina g/kg
  40. 'free_iron', # Free iron oxides g/kg
  41. 'delta_ph' # ΔpH
  42. ],
  43. 'target_name': 'target_ph'
  44. },
  45. 'soil_acid_8features': {
  46. 'file_path': 'model_optimize/data/data_filt - 副本.xlsx',
  47. 'x_columns': range(1, 9), # 8个特征
  48. 'y_column': -2, # delta_ph
  49. 'feature_names': [
  50. 'organic_matter', # OM g/kg
  51. 'chloride', # CL g/kg
  52. 'cec', # CEC cmol/kg
  53. 'h_concentration', # H+ cmol/kg
  54. 'hn', # HN mg/kg
  55. 'al_concentration', # Al3+ cmol/kg
  56. 'free_alumina', # Free alumina g/kg
  57. 'free_iron', # Free iron oxides g/kg
  58. ],
  59. 'target_name': 'target_ph'
  60. },
  61. 'soil_acid_8features_original': {
  62. 'file_path': 'model_optimize/data/data_filt.xlsx',
  63. 'x_columns': range(1, 9), # 8个特征
  64. 'y_column': -2, # delta_ph
  65. 'feature_names': [
  66. 'organic_matter', # OM g/kg
  67. 'chloride', # CL g/kg
  68. 'cec', # CEC cmol/kg
  69. 'h_concentration', # H+ cmol/kg
  70. 'hn', # HN mg/kg
  71. 'al_concentration', # Al3+ cmol/kg
  72. 'free_alumina', # Free alumina g/kg
  73. 'free_iron', # Free iron oxides g/kg
  74. ],
  75. 'target_name': 'target_ph'
  76. },
  77. 'soil_acid_6features': {
  78. 'file_path': 'model_optimize/data/data_reflux2.xlsx',
  79. 'x_columns': range(0, 6), # 6个特征
  80. 'y_column': -1, # delta_ph
  81. 'feature_names': [
  82. 'organic_matter', # OM g/kg
  83. 'chloride', # CL g/kg
  84. 'cec', # CEC cmol/kg
  85. 'h_concentration', # H+ cmol/kg
  86. 'hn', # HN mg/kg
  87. 'al_concentration', # Al3+ cmol/kg
  88. ],
  89. 'target_name': 'delta_ph'
  90. },
  91. 'acidity_reduce': {
  92. 'file_path': 'model_optimize/data/Acidity_reduce.xlsx',
  93. 'x_columns': range(1, 6), # 5个特征
  94. 'y_column': 0, # 1/b
  95. 'feature_names': [
  96. 'pH',
  97. 'OM',
  98. 'CL',
  99. 'H',
  100. 'Al'
  101. ],
  102. 'target_name': 'target'
  103. },
  104. 'acidity_reduce_new': {
  105. 'file_path': 'model_optimize/data/Acidity_reduce_new.xlsx',
  106. 'x_columns': range(1, 6), # 5个特征
  107. 'y_column': 0, # 1/b
  108. 'feature_names': [
  109. 'pH',
  110. 'OM',
  111. 'CL',
  112. 'H',
  113. 'Al'
  114. ],
  115. 'target_name': 'target'
  116. }
  117. }
  118. def load_dataset(dataset_name):
  119. """
  120. 加载指定的数据集
  121. Args:
  122. dataset_name: 数据集配置名称
  123. Returns:
  124. x: 特征数据
  125. y: 目标数据
  126. """
  127. if dataset_name not in DATASET_CONFIGS:
  128. raise ValueError(f"未知的数据集名称: {dataset_name}")
  129. config = DATASET_CONFIGS[dataset_name]
  130. data = pd.read_excel(config['file_path'])
  131. x = data.iloc[:, config['x_columns']]
  132. y = data.iloc[:, config['y_column']]
  133. # 设置列名
  134. x.columns = config['feature_names']
  135. y.name = config['target_name']
  136. return x, y
  137. # 选择要使用的数据集
  138. # dataset_name = 'soil_acid_9features' # 土壤反酸数据:64个样本,9个特征(包含delta_ph),目标 105_day_ph
  139. # dataset_name = 'soil_acid_8features_original' # 土壤反酸数据:64个样本,8个特征,目标 delta_ph
  140. dataset_name = 'soil_acid_8features' # 土壤反酸数据:60个样本(去除异常点),8个特征,目标 delta_ph
  141. # dataset_name = 'soil_acid_6features' # 土壤反酸数据:34个样本,6个特征,目标 delta_ph
  142. # dataset_name = 'acidity_reduce' # 精准降酸数据:54个样本,5个特征,目标是1/b
  143. # dataset_name = 'acidity_reduce_new' # 精准降酸数据(数据更新):54个样本,5个特征,目标是1/b
  144. x, y = load_dataset(dataset_name)
  145. print("特征数据:")
  146. print(x)
  147. print("\n目标数据:")
  148. print(y)
  149. ## 数据集划分
  150. Xtrain, Xtest, Ytrain, Ytest = train_test_split(x, y, test_size=0.2, random_state=42)
  151. ## 模型
  152. # 随机森林回归模型
  153. rfc = RandomForestRegressor(random_state=1)
  154. # XGBR
  155. XGB = XGBR(random_state=1)
  156. # GBSTR
  157. GBST = GBSTR(random_state=1)
  158. # KNN
  159. KNN = KNeighborsRegressor(n_neighbors=2)
  160. # 增量训练:每次增加10%的训练数据
  161. increment = 0.1 # 每次增加的比例
  162. train_sizes = np.arange(0.1, 1.1, increment) # 从0.1到1.0的训练集大小
  163. r2_scores_rfc = []
  164. r2_scores_xgb = []
  165. r2_scores_gbst = []
  166. r2_scores_knn = [] # 用来记录KNN的r2_score
  167. # 对于每种训练集大小,训练模型并记录r2_score
  168. for size in train_sizes[:10]:
  169. # 计算当前训练集的大小
  170. current_size = int(size * len(Xtrain))
  171. # RandomForestRegressor
  172. rfc.fit(Xtrain[:current_size], Ytrain[:current_size])
  173. # XGBRegressor
  174. XGB.fit(Xtrain[:current_size], Ytrain[:current_size])
  175. # GBST
  176. GBST.fit(Xtrain[:current_size], Ytrain[:current_size])
  177. # KNN
  178. KNN.fit(Xtrain[:current_size], Ytrain[:current_size])
  179. # r2_score
  180. y_pred_rfc = rfc.predict(Xtest)
  181. score_rfc = r2_score(Ytest, y_pred_rfc)
  182. r2_scores_rfc.append(score_rfc)
  183. # XGBRegressor的r2_score
  184. y_pred_xgb = XGB.predict(Xtest)
  185. score_xgb = r2_score(Ytest, y_pred_xgb)
  186. r2_scores_xgb.append(score_xgb)
  187. # GBST的r2_score
  188. y_pred_gbst = GBST.predict(Xtest)
  189. score_gbst = r2_score(Ytest, y_pred_gbst)
  190. r2_scores_gbst.append(score_gbst)
  191. # KNN的r2_score
  192. y_pred_knn = KNN.predict(Xtest)
  193. score_knn = r2_score(Ytest, y_pred_knn)
  194. r2_scores_knn.append(score_knn)
  195. # 输出当前的训练进度与r2评分
  196. print(f"Training with {size * 100:.2f}% of the data:")
  197. print(f" - Random Forest R2 score: {score_rfc}")
  198. print(f" - XGB R2 score: {score_xgb}")
  199. print(f" - GBST R2 score: {score_gbst}")
  200. print(f" - KNN R2 score: {score_knn}")
  201. # 绘制R2评分随训练数据大小变化的图形
  202. import matplotlib.pyplot as plt
  203. plt.plot(train_sizes * 100, r2_scores_rfc, marker='o', label='Random Forest')
  204. plt.plot(train_sizes * 100, r2_scores_xgb, marker='x', label='XGBoost')
  205. plt.plot(train_sizes * 100, r2_scores_gbst, marker='s', label='Gradient Boosting')
  206. # plt.plot(train_sizes * 100, r2_scores_knn, marker='^', label='KNN')
  207. plt.xlabel('Training data size (%)')
  208. plt.ylabel('R2 Score')
  209. plt.title('Model Performance with Incremental Data')
  210. plt.legend()
  211. plt.grid(True)
  212. plt.show()
  213. # 打印JavaScript中需要的数据格式
  214. print("X轴数据(训练数据大小):", [f"{int(size * 100)}%" for size in train_sizes])
  215. print("Random Forest R2分数:", r2_scores_rfc)
  216. print("XGBoost R2分数:", r2_scores_xgb)
  217. print("Gradient Boosting R2分数:", r2_scores_gbst)
  218. y_pred = rfc.predict(Xtest) # 使用任意一个模型,这里以随机森林为例
  219. residuals = Ytest - y_pred
  220. plt.scatter(Ytest, y_pred, color='blue', alpha=0.5)
  221. plt.plot([min(Ytest), max(Ytest)], [min(Ytest), max(Ytest)], color='red', linestyle='--') # 对角线 y=x
  222. plt.xlabel('True Values')
  223. plt.ylabel('Predicted Values')
  224. plt.title('True vs Predicted Values')
  225. plt.grid(True)
  226. plt.show()
  227. # 生成 scatterData
  228. scatter_data = [[float(true), float(pred)] for true, pred in zip(Ytest, y_pred)]
  229. # 打印 scatterData(可直接复制到 JavaScript 代码中)
  230. print("scatterData = ", scatter_data)
  231. # # 保存 X_test 和 Y_test 为 CSV 文件
  232. # X_test_df = pd.DataFrame(Xtest)
  233. # Y_test_df = pd.DataFrame(Ytest)
  234. # # 将 X_test 和 Y_test 保存为 CSV 文件,方便之后加载
  235. # X_test_df.to_csv('X_test_reflux.csv', index=False)
  236. # Y_test_df.to_csv('Y_test_reflux.csv', index=False)
  237. # # 输出提示信息
  238. # print("X_test 和 Y_test 已保存为 'X_test_reduce.csv' 和 'Y_test_reduce.csv'")
  239. # 选择后半部分数据
  240. # import matplotlib.pyplot as plt
  241. # # 选择后半部分数据
  242. # half_index = len(train_sizes) // 2
  243. # # 绘制后半部分的数据
  244. # plt.plot(train_sizes[half_index:] * 100, r2_scores_rfc[half_index:], marker='o', label='Random Forest')
  245. # plt.plot(train_sizes[half_index:] * 100, r2_scores_xgb[half_index:], marker='x', label='XGBoost')
  246. # plt.plot(train_sizes[half_index:] * 100, r2_scores_gbst[half_index:], marker='s', label='Gradient Boosting')
  247. # plt.plot(train_sizes[half_index:] * 100, r2_scores_knn[half_index:], marker='^', label='KNN')
  248. # plt.xlabel('Training data size (%)')
  249. # plt.ylabel('R2 Score')
  250. # plt.title('Model Performance with Incremental Data (Second Half)')
  251. # plt.legend()
  252. # plt.grid(True)
  253. # plt.show()