model.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. import datetime
  2. import os
  3. import pickle
  4. import pandas as pd
  5. from flask_sqlalchemy.session import Session
  6. from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
  7. from sklearn.metrics import r2_score
  8. from sklearn.model_selection import train_test_split, cross_val_score
  9. from sqlalchemy import text
  10. from xgboost import XGBRegressor
  11. from .database_models import Models, Datasets
  12. from .config import Config
  13. # 加载模型
  14. def load_model(session, model_id):
  15. model = session.query(Models).filter(Models.ModelID == model_id).first()
  16. if not model:
  17. raise ValueError(f"Model with ID {model_id} not found.")
  18. with open(model.ModelFilePath, 'rb') as f:
  19. return pickle.load(f)
  20. # 模型预测
  21. def predict(session, input_data: pd.DataFrame, model_id):
  22. # 初始化模型
  23. ML_model = load_model(session, model_id) # 根据指定的模型名加载模型
  24. # model = load_model(model_id) # 根据指定的模型名加载模型
  25. predictions = ML_model.predict(input_data)
  26. return predictions.tolist()
  27. # 计算模型评分
  28. def calculate_model_score(model_info):
  29. # 加载模型
  30. with open(model_info.ModelFilePath, 'rb') as f:
  31. ML_model = pickle.load(f)
  32. # print("Model requires the following features:", model.feature_names_in_)
  33. # 数据准备
  34. if model_info.Data_type == 'reflux': # 反酸数据集
  35. # 加载保存的 X_test 和 Y_test
  36. X_test = pd.read_csv('uploads/data/X_test_reflux.csv')
  37. Y_test = pd.read_csv('uploads/data/Y_test_reflux.csv')
  38. print(X_test.columns) # 在测试时使用的数据的列名
  39. y_pred = ML_model.predict(X_test)
  40. elif model_info.Data_type == 'reduce': # 降酸数据集
  41. # 加载保存的 X_test 和 Y_test
  42. X_test = pd.read_csv('uploads/data/X_test_reduce.csv')
  43. Y_test = pd.read_csv('uploads/data/Y_test_reduce.csv')
  44. print(X_test.columns) # 在测试时使用的数据的列名
  45. y_pred = ML_model.predict(X_test)
  46. # 计算 R² 分数
  47. r2 = r2_score(Y_test, y_pred)
  48. return r2
  49. def train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id=None):
  50. try:
  51. if not dataset_id:
  52. # 创建新的数据集并复制数据,此过程将不立即提交
  53. dataset_id = save_current_dataset(session, data_type, commit=False)
  54. if data_type == 'reflux':
  55. current_table = 'current_reflux'
  56. elif data_type == 'reduce':
  57. current_table = 'current_reduce'
  58. # 从current数据集表中加载数据
  59. dataset = pd.read_sql_table(current_table, session.bind)
  60. elif dataset_id:
  61. # 从新复制的数据集表中加载数据
  62. dataset_table_name = f"dataset_{dataset_id}"
  63. dataset = pd.read_sql_table(dataset_table_name, session.bind)
  64. if dataset.empty:
  65. raise ValueError(f"Dataset {dataset_id} is empty or not found.")
  66. if data_type == 'reflux':
  67. X = dataset.iloc[:, 1:-1]
  68. y = dataset.iloc[:, -1]
  69. elif data_type == 'reduce':
  70. X = dataset.iloc[:, 2:]
  71. y = dataset.iloc[:, 1]
  72. # 训练模型
  73. model = train_model_by_type(X, y, model_type)
  74. # 保存模型到数据库
  75. model_id = save_model(session, model, model_name, model_type, model_description, dataset_id, data_type)
  76. # 所有操作成功后,手动提交事务
  77. session.commit()
  78. return model_name, model_id
  79. except Exception as e:
  80. # 如果在任何阶段出现异常,回滚事务
  81. session.rollback()
  82. raise e # 可选择重新抛出异常或处理异常
  83. def save_current_dataset(session, data_type, commit=True):
  84. """
  85. 创建一个新的数据集条目,并复制对应的数据类型表的数据,但不立即提交事务。
  86. Args:
  87. session (Session): SQLAlchemy session对象。
  88. data_type (str): 数据集的类型。
  89. commit (bool): 是否在函数结束时提交事务。
  90. Returns:
  91. int: 新保存的数据集的ID。
  92. """
  93. new_dataset = Datasets(
  94. Dataset_name=f"{data_type}_dataset_{datetime.datetime.now():%Y%m%d_%H%M%S}",
  95. Dataset_description=f"Automatically generated dataset for type {data_type}",
  96. Row_count=0,
  97. Status='pending',
  98. Dataset_type=data_type
  99. )
  100. session.add(new_dataset)
  101. session.flush()
  102. dataset_id = new_dataset.Dataset_ID
  103. source_table = data_type_table_mapping(data_type)
  104. new_table_name = f"dataset_{dataset_id}"
  105. session.execute(text(f"CREATE TABLE {new_table_name} AS SELECT * FROM {source_table};"))
  106. session.execute(text(f"UPDATE datasets SET status='Datasets upgraded success', row_count=(SELECT count(*) FROM {new_table_name}) WHERE dataset_id={dataset_id};"))
  107. if commit:
  108. session.commit()
  109. return dataset_id
  110. def data_type_table_mapping(data_type):
  111. """映射数据类型到对应的数据库表名"""
  112. if data_type == 'reduce':
  113. return 'current_reduce'
  114. elif data_type == 'reflux':
  115. return 'current_reflux'
  116. else:
  117. raise ValueError("Invalid data type provided.")
  118. def train_model_by_type(X, y, model_type):
  119. # 划分数据集
  120. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  121. if model_type == 'RandomForest':
  122. # 随机森林的参数优化
  123. return train_random_forest(X_train, y_train)
  124. elif model_type == 'XGBR':
  125. # XGBoost的参数优化
  126. return train_xgboost(X_train, y_train)
  127. elif model_type == 'GBSTR':
  128. # 梯度提升树的参数优化
  129. return train_gradient_boosting(X_train, y_train)
  130. else:
  131. raise ValueError(f"Unsupported model type: {model_type}")
  132. def train_random_forest(X_train, y_train):
  133. best_score = -float('inf')
  134. best_n_estimators = None
  135. best_max_depth = None
  136. random_state = 43
  137. # 筛选最佳的树的数量
  138. for n_estimators in range(1, 20, 1):
  139. model = RandomForestRegressor(n_estimators=n_estimators, random_state=random_state)
  140. score = cross_val_score(model, X_train, y_train, cv=5).mean()
  141. if score > best_score:
  142. best_score = score
  143. best_n_estimators = n_estimators
  144. print(f"Best number of trees: {best_n_estimators}, Score: {best_score}")
  145. # 在找到的最佳树的数量基础上,筛选最佳的最大深度
  146. best_score = 0 # 重置最佳得分,为最大深度优化做准备
  147. for max_depth in range(1, 5, 1):
  148. model = RandomForestRegressor(n_estimators=best_n_estimators, max_depth=max_depth, random_state=random_state)
  149. score = cross_val_score(model, X_train, y_train, cv=5).mean()
  150. if score > best_score:
  151. best_score = score
  152. best_max_depth = max_depth
  153. print(f"Best max depth: {best_max_depth}, Score: {best_score}")
  154. # 使用最佳的树的数量和最大深度训练最终模型
  155. best_model = RandomForestRegressor(n_estimators=best_n_estimators, max_depth=best_max_depth,
  156. random_state=random_state)
  157. # 传入列名进行训练
  158. best_model.fit(X_train, y_train)
  159. # 指定传入的特征名
  160. best_model.feature_names_in_ = X_train.columns
  161. return best_model
  162. def train_xgboost(X_train, y_train):
  163. best_score = -float('inf')
  164. best_params = {'learning_rate': None, 'max_depth': None}
  165. random_state = 43
  166. for learning_rate in [0.01, 0.05, 0.1, 0.2]:
  167. for max_depth in range(3, 10):
  168. model = XGBRegressor(learning_rate=learning_rate, max_depth=max_depth, random_state=random_state)
  169. score = cross_val_score(model, X_train, y_train, cv=5).mean()
  170. if score > best_score:
  171. best_score = score
  172. best_params['learning_rate'] = learning_rate
  173. best_params['max_depth'] = max_depth
  174. print(f"Best parameters: {best_params}, Score: {best_score}")
  175. # 使用找到的最佳参数训练最终模型
  176. best_model = XGBRegressor(learning_rate=best_params['learning_rate'], max_depth=best_params['max_depth'],
  177. random_state=random_state)
  178. best_model.fit(X_train, y_train)
  179. return best_model
  180. def train_gradient_boosting(X_train, y_train):
  181. best_score = -float('inf')
  182. best_params = {'learning_rate': None, 'max_depth': None}
  183. random_state = 43
  184. for learning_rate in [0.01, 0.05, 0.1, 0.2]:
  185. for max_depth in range(3, 10):
  186. model = GradientBoostingRegressor(learning_rate=learning_rate, max_depth=max_depth, random_state=random_state)
  187. score = cross_val_score(model, X_train, y_train, cv=5).mean()
  188. if score > best_score:
  189. best_score = score
  190. best_params['learning_rate'] = learning_rate
  191. best_params['max_depth'] = max_depth
  192. print(f"Best parameters: {best_params}, Score: {best_score}")
  193. # 使用找到的最佳参数训练最终模型
  194. best_model = GradientBoostingRegressor(learning_rate=best_params['learning_rate'], max_depth=best_params['max_depth'],
  195. random_state=random_state)
  196. best_model.fit(X_train, y_train)
  197. return best_model
  198. def save_model(session, model, model_name, model_type, model_description, dataset_id, data_type, commit=False):
  199. """
  200. 保存模型到数据库,并将模型文件保存到磁盘。
  201. Args:
  202. session: 数据库会话
  203. model: 要保存的模型对象
  204. model_name: 模型的名称
  205. model_type: 模型的类型
  206. model_description: 模型的描述信息
  207. dataset_id: 数据集ID
  208. data_type: 数据类型
  209. commit: 是否提交事务
  210. Returns:
  211. int: 返回保存的模型ID
  212. """
  213. prefix_dict = {
  214. 'RandomForest': 'rf_model_',
  215. 'XGBR': 'xgbr_model_',
  216. 'GBSTR': 'gbstr_model_'
  217. }
  218. prefix = prefix_dict.get(model_type, 'default_model_')
  219. try:
  220. # 从配置中获取保存路径
  221. model_save_path = Config.MODEL_SAVE_PATH
  222. # 确保路径存在
  223. os.makedirs(model_save_path, exist_ok=True)
  224. # 获取当前时间戳
  225. timestamp = datetime.datetime.now().strftime('%m%d_%H%M')
  226. # 拼接完整的文件名
  227. file_name = os.path.join(model_save_path, f'{prefix}{timestamp}.pkl')
  228. # 保存模型到文件
  229. with open(file_name, 'wb') as f:
  230. pickle.dump(model, f)
  231. print(f"模型已保存至: {file_name}")
  232. # 创建模型数据库记录
  233. new_model = Models(
  234. Model_name=model_name,
  235. Model_type=model_type,
  236. Description=model_description,
  237. DatasetID=dataset_id,
  238. Created_at=datetime.datetime.now(),
  239. ModelFilePath=file_name,
  240. Data_type=data_type
  241. )
  242. # 添加记录到数据库
  243. session.add(new_model)
  244. session.flush()
  245. return new_model.ModelID
  246. except Exception as e:
  247. print(f"保存模型时发生错误: {str(e)}")
  248. raise
  249. if __name__ == '__main__':
  250. # 反酸模型预测
  251. # 测试 predict 函数
  252. input_data = pd.DataFrame([{
  253. "organic_matter": 5.2,
  254. "chloride": 3.1,
  255. "cec": 25.6,
  256. "h_concentration": 0.5,
  257. "hn": 12.4,
  258. "al_concentration": 0.8,
  259. "free_alumina": 1.2,
  260. "free_iron": 0.9,
  261. "delta_ph": -0.2
  262. }])
  263. model_name = 'RF_filt'
  264. Acid_reflux_result = predict(input_data, model_name)
  265. print("Acid_reflux_result:", Acid_reflux_result) # 预测结果
  266. # 降酸模型预测
  267. # 测试 predict 函数
  268. input_data = pd.DataFrame([{
  269. "pH": 5.2,
  270. "OM": 3.1,
  271. "CL": 25.6,
  272. "H": 0.5,
  273. "Al": 12.4
  274. }])
  275. model_name = 'rf_model_1214_1008'
  276. Acid_reduce_result = predict(input_data, model_name)
  277. print("Acid_reduce_result:", Acid_reduce_result) # 预测结果