123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- import datetime
- import os
- import pickle
- import pandas as pd
- from flask_sqlalchemy.session import Session
- from sklearn.ensemble import RandomForestRegressor
- from sklearn.model_selection import train_test_split, cross_val_score
- from sqlalchemy import text
- from .database_models import Models, Datasets
- # 加载模型
- def load_model(model_name):
- file_path = f'model_optimize/pkl/{model_name}.pkl'
- with open(file_path, 'rb') as f:
- return pickle.load(f)
- # 模型预测
- def predict(input_data: pd.DataFrame, model_name):
- # 初始化模型
- model = load_model(model_name) # 根据指定的模型名加载模型
- predictions = model.predict(input_data)
- return predictions.tolist()
- def train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id=None):
- if not dataset_id:
- # 直接创建新的数据集并复制数据
- dataset_id = save_current_dataset(session, data_type)
- # 从新复制的数据集表中加载数据
- dataset_table_name = f"dataset_{dataset_id}"
- dataset = pd.read_sql_table(dataset_table_name, session.bind)
- if dataset.empty:
- raise ValueError(f"Dataset {dataset_id} is empty or not found.")
- # 数据准备
- X = dataset.iloc[:, :-1]
- y = dataset.iloc[:, -1]
- # 训练模型
- model = train_model_by_type(X, y, model_type)
- # 保存模型到数据库
- save_model(session, model, model_name, model_type, model_description, dataset_id, data_type)
- # # 保存模型参数
- # save_model_parameters(model, saved_model.ModelID)
- # # 计算评估指标(如MSE)
- # y_pred = model.predict(X)
- # mse = mean_squared_error(y, y_pred)
- #
- # return saved_model, mse
- def save_current_dataset(session, data_type):
- """
- 创建一个新的数据集条目,并复制对应的数据类型表的数据。
- Args:
- session (Session): SQLAlchemy session对象。
- data_type (str): 数据集的类型,如 'reduce' 或 'reflux'。
- Returns:
- int: 新保存的数据集的ID。
- """
- # 创建一个新的数据集条目
- new_dataset = Datasets(
- Dataset_name=f"{data_type}_dataset_{datetime.datetime.now():%Y%m%d_%H%M%S}", # 使用当前时间戳生成独特的名称
- Dataset_description=f"Automatically generated dataset for type {data_type}",
- Row_count=0, # 初始行数为0,将在复制数据后更新
- Status='pending', # 初始状态为pending
- Dataset_type=data_type
- )
- # 添加到数据库并提交以获取ID
- session.add(new_dataset)
- session.flush() # flush用于立即执行SQL并获取ID,但不提交事务
- # 获取新数据集的ID
- dataset_id = new_dataset.Dataset_ID
- # 复制数据到新表
- source_table = data_type_table_mapping(data_type) # 假设有函数映射数据类型到表名
- new_table_name = f"dataset_{dataset_id}"
- copy_table_sql = f"CREATE TABLE {new_table_name} AS SELECT * FROM {source_table};"
- session.execute(text(copy_table_sql))
- # 更新新数据集的状态和行数
- update_sql = f"UPDATE datasets SET status='processed', row_count=(SELECT count(*) FROM {new_table_name}) WHERE dataset_id={dataset_id};"
- session.execute(text(update_sql))
- session.commit()
- return dataset_id
- def data_type_table_mapping(data_type):
- """映射数据类型到对应的数据库表名"""
- if data_type == 'reduce':
- return 'current_reduce'
- elif data_type == 'reflux':
- return 'current_reflux'
- else:
- raise ValueError("Invalid data type provided.")
- def train_model_by_type(X, y, model_type):
- # 划分数据集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- if model_type == 'RandomForest':
- # 随机森林的参数优化
- return train_random_forest(X_train, y_train)
- elif model_type == 'XGBR':
- # XGBoost的参数优化
- return train_xgboost(X_train, y_train)
- elif model_type == 'GBSTR':
- # 梯度提升树的参数优化
- return train_gradient_boosting(X_train, y_train)
- else:
- raise ValueError(f"Unsupported model type: {model_type}")
- def train_random_forest(X_train, y_train):
- best_score = 0
- best_n_estimators = None
- best_max_depth = None
- random_state = 43
- # 筛选最佳的树的数量
- for n_estimators in range(1, 20, 1):
- model = RandomForestRegressor(n_estimators=n_estimators, random_state=random_state)
- score = cross_val_score(model, X_train, y_train, cv=5).mean()
- if score > best_score:
- best_score = score
- best_n_estimators = n_estimators
- print(f"Best number of trees: {best_n_estimators}, Score: {best_score}")
- # 在找到的最佳树的数量基础上,筛选最佳的最大深度
- best_score = 0 # 重置最佳得分,为最大深度优化做准备
- for max_depth in range(1, 30, 1):
- model = RandomForestRegressor(n_estimators=best_n_estimators, max_depth=max_depth, random_state=random_state)
- score = cross_val_score(model, X_train, y_train, cv=5).mean()
- if score > best_score:
- best_score = score
- best_max_depth = max_depth
- print(f"Best max depth: {best_max_depth}, Score: {best_score}")
- # 使用最佳的树的数量和最大深度训练最终模型
- best_model = RandomForestRegressor(n_estimators=best_n_estimators, max_depth=best_max_depth,
- random_state=random_state)
- best_model.fit(X_train, y_train)
- return best_model
- def train_xgboost(X_train, y_train, X_test, y_test):
- # XGBoost训练过程
- # (将类似上面的代码添加到这里)
- pass
- def train_gradient_boosting(X_train, y_train, X_test, y_test):
- # 梯度提升树训练过程
- # (将类似上面的代码添加到这里)
- pass
- def save_model(session, model, model_name, model_type, model_description, dataset_id, data_type, custom_path='pkl'):
- """
- 保存模型到数据库,并将模型文件保存到磁盘。
- :param session: 数据库会话
- :param model: 要保存的模型对象
- :param model_name: 模型的名称
- :param model_type: 模型的类型
- :param model_description: 模型的描述信息
- :param dataset_id: 数据集ID
- :param custom_path: 保存模型的路径
- :return: 返回保存的模型文件路径
- """
- # 根据模型类型设置文件名前缀
- prefix_dict = {
- 'RandomForest': 'rf_model_',
- 'XGBRegressor': 'xgbr_model_',
- 'GBSTRegressor': 'gbstr_model_'
- }
- prefix = prefix_dict.get(model_type, 'default_model_') # 如果model_type不在字典中,默认前缀
- try:
- # 确保路径存在
- os.makedirs(custom_path, exist_ok=True)
- # 获取当前时间戳(格式:月日时分)
- timestamp = datetime.datetime.now().strftime('%m%d_%H%M')
- # 拼接完整的文件名
- file_name = os.path.join(custom_path, f'{prefix}{timestamp}.pkl')
- # 保存模型到文件
- with open(file_name, 'wb') as f:
- pickle.dump(model, f)
- print(f"模型已保存为: {file_name}")
- # 创建模型数据库记录
- new_model = Models(
- Model_name=model_name,
- Model_type=model_type,
- Description=model_description,
- DatasetID=dataset_id,
- Created_at=datetime.datetime.now(),
- ModelFilePath=file_name,
- Data_type=data_type
- )
- # 添加记录到数据库
- session.add(new_model)
- session.commit()
- # 返回文件路径
- return file_name
- except Exception as e:
- session.rollback()
- print(f"Error saving model: {str(e)}")
- raise e # 显式抛出异常供调用者处理
- if __name__ == '__main__':
- # 反酸模型预测
- # 测试 predict 函数
- input_data = pd.DataFrame([{
- "organic_matter": 5.2,
- "chloride": 3.1,
- "cec": 25.6,
- "h_concentration": 0.5,
- "hn": 12.4,
- "al_concentration": 0.8,
- "free_alumina": 1.2,
- "free_iron": 0.9,
- "delta_ph": -0.2
- }])
- model_name = 'RF_filt'
- Acid_reflux_result = predict(input_data, model_name)
- print("Acid_reflux_result:", Acid_reflux_result) # 预测结果
- # 降酸模型预测
- # 测试 predict 函数
- input_data = pd.DataFrame([{
- "pH": 5.2,
- "OM": 3.1,
- "CL": 25.6,
- "H": 0.5,
- "Al": 12.4
- }])
- model_name = 'rf_model_1214_1008'
- Acid_reduce_result = predict(input_data, model_name)
- print("Acid_reduce_result:", Acid_reduce_result) # 预测结果
|