routes.py 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057
  1. import sqlite3
  2. from flask import current_app
  3. from werkzeug.security import generate_password_hash, check_password_hash
  4. from flask import Blueprint, request, jsonify, current_app as app
  5. from .model import predict, train_and_save_model, calculate_model_score
  6. import pandas as pd
  7. from . import db # 从 app 包导入 db 实例
  8. from sqlalchemy.engine.reflection import Inspector
  9. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  10. import os
  11. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  12. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  13. predict_to_Q, Q_to_t_ha
  14. from sqlalchemy.orm import sessionmaker
  15. import logging
  16. from sqlalchemy import text, select, MetaData, Table, func
  17. from .tasks import train_model_task
  18. # 配置日志
  19. logging.basicConfig(level=logging.DEBUG)
  20. logger = logging.getLogger(__name__)
  21. # 创建蓝图 (Blueprint),用于分离路由
  22. bp = Blueprint('routes', __name__)
  23. # 密码加密
  24. def hash_password(password):
  25. return generate_password_hash(password)
  26. def get_db():
  27. """ 获取数据库连接 """
  28. return sqlite3.connect(app.config['DATABASE'])
  29. # 添加一个新的辅助函数来检查数据集大小并触发训练
  30. def check_and_trigger_training(session, dataset_type, dataset_df):
  31. """
  32. 检查当前数据集大小是否跨越新的阈值点并触发训练
  33. Args:
  34. session: 数据库会话
  35. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  36. dataset_df: 数据集 DataFrame
  37. Returns:
  38. tuple: (是否触发训练, 任务ID)
  39. """
  40. try:
  41. # 根据数据集类型选择表
  42. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  43. # 获取当前记录数
  44. current_count = session.query(func.count()).select_from(table).scalar()
  45. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  46. new_records = len(dataset_df) # 需要从上层函数传入
  47. # 计算新增数据前的记录数
  48. previous_count = current_count - new_records
  49. # 设置阈值
  50. THRESHOLD = current_app.config['THRESHOLD']
  51. # 计算上一个阈值点(基于新增前的数据量)
  52. last_threshold = previous_count // THRESHOLD * THRESHOLD
  53. # 计算当前所在阈值点
  54. current_threshold = current_count // THRESHOLD * THRESHOLD
  55. # 检查是否跨越了新的阈值点
  56. if current_threshold > last_threshold and current_count >= THRESHOLD:
  57. # 触发异步训练任务
  58. task = train_model_task.delay(
  59. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  60. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  61. model_description=f'Auto trained model at {current_threshold} records threshold',
  62. data_type=dataset_type
  63. )
  64. return True, task.id
  65. return False, None
  66. except Exception as e:
  67. logging.error(f"检查并触发训练失败: {str(e)}")
  68. return False, None
  69. @bp.route('/upload-dataset', methods=['POST'])
  70. def upload_dataset():
  71. try:
  72. if 'file' not in request.files:
  73. return jsonify({'error': 'No file part'}), 400
  74. file = request.files['file']
  75. if file.filename == '' or not allowed_file(file.filename):
  76. return jsonify({'error': 'No selected file or invalid file type'}), 400
  77. dataset_name = request.form.get('dataset_name')
  78. dataset_description = request.form.get('dataset_description', 'No description provided')
  79. dataset_type = request.form.get('dataset_type')
  80. if not dataset_type:
  81. return jsonify({'error': 'Dataset type is required'}), 400
  82. # 创建 sessionmaker 实例
  83. Session = sessionmaker(bind=db.engine)
  84. session = Session()
  85. new_dataset = Datasets(
  86. Dataset_name=dataset_name,
  87. Dataset_description=dataset_description,
  88. Row_count=0,
  89. Status='Datasets_upgraded',
  90. Dataset_type=dataset_type
  91. )
  92. session.add(new_dataset)
  93. session.commit()
  94. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  95. upload_folder = current_app.config['UPLOAD_FOLDER']
  96. file_path = os.path.join(upload_folder, unique_filename)
  97. file.save(file_path)
  98. dataset_df = pd.read_excel(file_path)
  99. new_dataset.Row_count = len(dataset_df)
  100. new_dataset.Status = 'excel_file_saved success'
  101. session.commit()
  102. # 处理列名
  103. dataset_df = clean_column_names(dataset_df)
  104. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  105. column_types = infer_column_types(dataset_df)
  106. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  107. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  108. # 根据 dataset_type 决定插入到哪个已有表
  109. if dataset_type == 'reduce':
  110. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  111. elif dataset_type == 'reflux':
  112. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  113. session.commit()
  114. # 在完成数据插入后,检查是否需要触发训练
  115. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  116. response_data = {
  117. 'message': f'Dataset {dataset_name} uploaded successfully!',
  118. 'dataset_id': new_dataset.Dataset_ID,
  119. 'filename': unique_filename,
  120. 'training_triggered': training_triggered
  121. }
  122. if training_triggered:
  123. response_data['task_id'] = task_id
  124. response_data['message'] += ' Auto-training has been triggered.'
  125. return jsonify(response_data), 201
  126. except Exception as e:
  127. session.rollback()
  128. logging.error('Failed to process the dataset upload:', exc_info=True)
  129. return jsonify({'error': str(e)}), 500
  130. finally:
  131. session.close()
  132. @bp.route('/train-and-save-model', methods=['POST'])
  133. def train_and_save_model_endpoint():
  134. # 创建 sessionmaker 实例
  135. Session = sessionmaker(bind=db.engine)
  136. session = Session()
  137. data = request.get_json()
  138. # 从请求中解析参数
  139. model_type = data.get('model_type')
  140. model_name = data.get('model_name')
  141. model_description = data.get('model_description')
  142. data_type = data.get('data_type')
  143. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  144. try:
  145. # 调用训练和保存模型的函数
  146. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  147. model_id = result[1] if result else None
  148. # 计算模型评分
  149. if model_id:
  150. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  151. if model_info:
  152. score = calculate_model_score(model_info)
  153. # 更新模型评分
  154. model_info.Performance_score = score
  155. session.commit()
  156. result = {'model_id': model_id, 'model_score': score}
  157. # 返回成功响应
  158. return jsonify({
  159. 'message': 'Model trained and saved successfully',
  160. 'result': result
  161. }), 200
  162. except Exception as e:
  163. session.rollback()
  164. logging.error('Failed to process the model training:', exc_info=True)
  165. return jsonify({
  166. 'error': 'Failed to train and save model',
  167. 'message': str(e)
  168. }), 500
  169. finally:
  170. session.close()
  171. @bp.route('/predict', methods=['POST'])
  172. def predict_route():
  173. # 创建 sessionmaker 实例
  174. Session = sessionmaker(bind=db.engine)
  175. session = Session()
  176. try:
  177. data = request.get_json()
  178. model_id = data.get('model_id') # 提取模型名称
  179. parameters = data.get('parameters', {}) # 提取所有变量
  180. # 根据model_id获取模型Data_type
  181. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  182. if not model_info:
  183. return jsonify({'error': 'Model not found'}), 404
  184. data_type = model_info.Data_type
  185. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  186. # 如果为reduce,则不需要传入target_ph
  187. if data_type == 'reduce':
  188. # 获取传入的init_ph、target_ph参数
  189. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  190. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  191. # 从输入数据中删除'target_pH'列
  192. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  193. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  194. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  195. if data_type == 'reduce':
  196. predictions = predictions[0]
  197. # 将预测结果转换为Q
  198. Q = predict_to_Q(predictions, init_ph, target_ph)
  199. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  200. print(predictions)
  201. return jsonify({'result': predictions}), 200
  202. except Exception as e:
  203. logging.error('Failed to predict:', exc_info=True)
  204. return jsonify({'error': str(e)}), 400
  205. # 为指定模型计算评分Performance_score,需要提供model_id
  206. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  207. def score_model(model_id):
  208. # 创建 sessionmaker 实例
  209. Session = sessionmaker(bind=db.engine)
  210. session = Session()
  211. try:
  212. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  213. if not model_info:
  214. return jsonify({'error': 'Model not found'}), 404
  215. # 计算模型评分
  216. score = calculate_model_score(model_info)
  217. # 更新模型记录中的评分
  218. model_info.Performance_score = score
  219. session.commit()
  220. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  221. except Exception as e:
  222. logging.error('Failed to process the dataset upload:', exc_info=True)
  223. return jsonify({'error': str(e)}), 400
  224. finally:
  225. session.close()
  226. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  227. def delete_dataset_endpoint(dataset_id):
  228. """
  229. 删除数据集的API接口
  230. @param dataset_id: 要删除的数据集ID
  231. @return: JSON响应
  232. """
  233. # 创建 sessionmaker 实例
  234. Session = sessionmaker(bind=db.engine)
  235. session = Session()
  236. try:
  237. # 查询数据集
  238. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  239. if not dataset:
  240. return jsonify({'error': '未找到数据集'}), 404
  241. # 检查是否有模型使用了该数据集
  242. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  243. if models_using_dataset:
  244. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  245. return jsonify({
  246. 'error': '无法删除数据集,因为以下模型正在使用它',
  247. 'models': models_info
  248. }), 400
  249. # 删除Excel文件
  250. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  251. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  252. if os.path.exists(file_path):
  253. try:
  254. os.remove(file_path)
  255. except OSError as e:
  256. logger.error(f'删除文件失败: {str(e)}')
  257. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  258. # 删除数据表
  259. table_name = f"dataset_{dataset.Dataset_ID}"
  260. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  261. # 删除数据集记录
  262. session.delete(dataset)
  263. session.commit()
  264. return jsonify({
  265. 'message': '数据集删除成功',
  266. 'deleted_files': [filename]
  267. }), 200
  268. except Exception as e:
  269. session.rollback()
  270. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  271. return jsonify({'error': str(e)}), 500
  272. finally:
  273. session.close()
  274. @bp.route('/tables', methods=['GET'])
  275. def list_tables():
  276. engine = db.engine # 使用 db 实例的 engine
  277. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  278. table_names = inspector.get_table_names() # 获取所有表名
  279. return jsonify(table_names) # 以 JSON 形式返回表名列表
  280. @bp.route('/models/<int:model_id>', methods=['GET'])
  281. def get_model(model_id):
  282. try:
  283. model = Models.query.filter_by(ModelID=model_id).first()
  284. if model:
  285. return jsonify({
  286. 'ModelID': model.ModelID,
  287. 'ModelName': model.ModelName,
  288. 'ModelType': model.ModelType,
  289. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  290. 'Description': model.Description
  291. })
  292. else:
  293. return jsonify({'message': 'Model not found'}), 404
  294. except Exception as e:
  295. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  296. @bp.route('/models', methods=['GET'])
  297. def get_all_models():
  298. try:
  299. models = Models.query.all() # 获取所有模型数据
  300. if models:
  301. result = [
  302. {
  303. 'ModelID': model.ModelID,
  304. 'ModelName': model.ModelName,
  305. 'ModelType': model.ModelType,
  306. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  307. 'Description': model.Description
  308. }
  309. for model in models
  310. ]
  311. return jsonify(result)
  312. else:
  313. return jsonify({'message': 'No models found'}), 404
  314. except Exception as e:
  315. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  316. @bp.route('/model-parameters', methods=['GET'])
  317. def get_all_model_parameters():
  318. try:
  319. parameters = ModelParameters.query.all() # 获取所有参数数据
  320. if parameters:
  321. result = [
  322. {
  323. 'ParamID': param.ParamID,
  324. 'ModelID': param.ModelID,
  325. 'ParamName': param.ParamName,
  326. 'ParamValue': param.ParamValue
  327. }
  328. for param in parameters
  329. ]
  330. return jsonify(result)
  331. else:
  332. return jsonify({'message': 'No parameters found'}), 404
  333. except Exception as e:
  334. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  335. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  336. def get_model_parameters(model_id):
  337. try:
  338. model = Models.query.filter_by(ModelID=model_id).first()
  339. if model:
  340. # 获取该模型的所有参数
  341. parameters = [
  342. {
  343. 'ParamID': param.ParamID,
  344. 'ParamName': param.ParamName,
  345. 'ParamValue': param.ParamValue
  346. }
  347. for param in model.parameters
  348. ]
  349. # 返回模型参数信息
  350. return jsonify({
  351. 'ModelID': model.ModelID,
  352. 'ModelName': model.ModelName,
  353. 'ModelType': model.ModelType,
  354. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  355. 'Description': model.Description,
  356. 'Parameters': parameters
  357. })
  358. else:
  359. return jsonify({'message': 'Model not found'}), 404
  360. except Exception as e:
  361. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  362. # 定义添加数据库记录的 API 接口
  363. @bp.route('/add_item', methods=['POST'])
  364. def add_item():
  365. """
  366. 接收 JSON 格式的请求体,包含表名和要插入的数据。
  367. 尝试将数据插入到指定的表中。
  368. :return:
  369. """
  370. try:
  371. # 确保请求体是JSON格式
  372. data = request.get_json()
  373. if not data:
  374. raise ValueError("No JSON data provided")
  375. table_name = data.get('table')
  376. item_data = data.get('item')
  377. if not table_name or not item_data:
  378. return jsonify({'error': 'Missing table name or item data'}), 400
  379. cur = db.cursor()
  380. # 动态构建 SQL 语句
  381. columns = ', '.join(item_data.keys())
  382. placeholders = ', '.join(['?'] * len(item_data))
  383. sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
  384. cur.execute(sql, tuple(item_data.values()))
  385. db.commit()
  386. # 返回更详细的成功响应
  387. return jsonify({'success': True, 'message': 'Item added successfully'}), 201
  388. except ValueError as e:
  389. return jsonify({'error': str(e)}), 400
  390. except KeyError as e:
  391. return jsonify({'error': f'Missing data field: {e}'}), 400
  392. except sqlite3.IntegrityError as e:
  393. # 处理例如唯一性约束违反等数据库完整性错误
  394. return jsonify({'error': 'Database integrity error', 'details': str(e)}), 409
  395. except sqlite3.Error as e:
  396. # 处理其他数据库错误
  397. return jsonify({'error': 'Database error', 'details': str(e)}), 500
  398. finally:
  399. db.close()
  400. # 定义删除数据库记录的 API 接口
  401. @bp.route('/delete_item', methods=['POST'])
  402. def delete_item():
  403. data = request.get_json()
  404. table_name = data.get('table')
  405. condition = data.get('condition')
  406. # 检查表名和条件是否提供
  407. if not table_name or not condition:
  408. return jsonify({
  409. "success": False,
  410. "message": "缺少表名或条件参数"
  411. }), 400
  412. # 尝试从条件字符串中分离键和值
  413. try:
  414. key, value = condition.split('=')
  415. except ValueError:
  416. return jsonify({
  417. "success": False,
  418. "message": "条件格式错误,应为 'key=value'"
  419. }), 400
  420. cur = db.cursor()
  421. try:
  422. # 执行删除操作
  423. cur.execute(f"DELETE FROM {table_name} WHERE {key} = ?", (value,))
  424. db.commit()
  425. # 如果没有错误发生,返回成功响应
  426. return jsonify({
  427. "success": True,
  428. "message": "记录删除成功"
  429. }), 200
  430. except sqlite3.Error as e:
  431. # 发生错误,回滚事务
  432. db.rollback()
  433. # 返回失败响应,并包含错误信息
  434. return jsonify({
  435. "success": False,
  436. "message": f"删除失败: {e}"
  437. }), 400
  438. # 定义修改数据库记录的 API 接口
  439. @bp.route('/update_item', methods=['PUT'])
  440. def update_record():
  441. data = request.get_json()
  442. # 检查必要的数据是否提供
  443. if not data or 'table' not in data or 'item' not in data:
  444. return jsonify({
  445. "success": False,
  446. "message": "请求数据不完整"
  447. }), 400
  448. table_name = data['table']
  449. item = data['item']
  450. # 假设 item 的第一个元素是 ID
  451. if not item or next(iter(item.keys())) is None:
  452. return jsonify({
  453. "success": False,
  454. "message": "记录数据为空"
  455. }), 400
  456. # 获取 ID 和其他字段值
  457. id_key = next(iter(item.keys()))
  458. record_id = item[id_key]
  459. updates = {key: value for key, value in item.items() if key != id_key} # 排除 ID
  460. cur = db.cursor()
  461. try:
  462. record_id = int(record_id) # 确保 ID 是整数
  463. except ValueError:
  464. return jsonify({
  465. "success": False,
  466. "message": "ID 必须是整数"
  467. }), 400
  468. # 准备参数列表,包括更新的值和 ID
  469. parameters = list(updates.values()) + [record_id]
  470. # 执行更新操作
  471. set_clause = ','.join([f"{k} = ?" for k in updates.keys()])
  472. sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = ?"
  473. try:
  474. cur.execute(sql, parameters)
  475. db.commit()
  476. if cur.rowcount == 0:
  477. return jsonify({
  478. "success": False,
  479. "message": "未找到要更新的记录"
  480. }), 404
  481. return jsonify({
  482. "success": True,
  483. "message": "数据更新成功"
  484. }), 200
  485. except sqlite3.Error as e:
  486. db.rollback()
  487. return jsonify({
  488. "success": False,
  489. "message": f"更新失败: {e}"
  490. }), 400
  491. # 定义查询数据库记录的 API 接口
  492. @bp.route('/search/record', methods=['GET'])
  493. def sql_search():
  494. """
  495. 接收 JSON 格式的请求体,包含表名和要查询的 ID。
  496. 尝试查询指定 ID 的记录并返回结果。
  497. :return:
  498. """
  499. try:
  500. data = request.get_json()
  501. # 表名
  502. sql_table = data['table']
  503. # 要搜索的 ID
  504. Id = data['id']
  505. # 连接到数据库
  506. cur = db.cursor()
  507. # 构造查询语句
  508. sql = f"SELECT * FROM {sql_table} WHERE id = ?"
  509. # 执行查询
  510. cur.execute(sql, (Id,))
  511. # 获取查询结果
  512. rows = cur.fetchall()
  513. column_names = [desc[0] for desc in cur.description]
  514. # 检查是否有结果
  515. if not rows:
  516. return jsonify({'error': '未查找到对应数据。'}), 400
  517. # 构造响应数据
  518. results = []
  519. for row in rows:
  520. result = {column_names[i]: row[i] for i in range(len(row))}
  521. results.append(result)
  522. # 关闭游标和数据库连接
  523. cur.close()
  524. db.close()
  525. # 返回 JSON 响应
  526. return jsonify(results), 200
  527. except sqlite3.Error as e:
  528. # 如果发生数据库错误,返回错误信息
  529. return jsonify({'error': str(e)}), 400
  530. except KeyError as e:
  531. # 如果请求数据中缺少必要的键,返回错误信息
  532. return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
  533. # 定义提供数据库列表,用于展示表格的 API 接口
  534. @bp.route('/table', methods=['POST'])
  535. def get_table():
  536. data = request.get_json()
  537. table_name = data.get('table')
  538. if not table_name:
  539. return jsonify({'error': '需要表名'}), 400
  540. try:
  541. # 创建 sessionmaker 实例
  542. Session = sessionmaker(bind=db.engine)
  543. session = Session()
  544. # 动态获取表的元数据
  545. metadata = MetaData()
  546. table = Table(table_name, metadata, autoload_with=db.engine)
  547. # 从数据库中查询所有记录
  548. query = select(table)
  549. result = session.execute(query).fetchall()
  550. # 将结果转换为列表字典形式
  551. rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
  552. # 获取列名
  553. headers = [column.name for column in table.columns]
  554. return jsonify(rows=rows, headers=headers), 200
  555. except Exception as e:
  556. return jsonify({'error': str(e)}), 400
  557. finally:
  558. # 关闭 session
  559. session.close()
  560. @bp.route('/train-model-async', methods=['POST'])
  561. def train_model_async():
  562. """
  563. 异步训练模型的API接口
  564. """
  565. try:
  566. data = request.get_json()
  567. # 从请求中获取参数
  568. model_type = data.get('model_type')
  569. model_name = data.get('model_name')
  570. model_description = data.get('model_description')
  571. data_type = data.get('data_type')
  572. dataset_id = data.get('dataset_id', None)
  573. # 验证必要参数
  574. if not all([model_type, model_name, data_type]):
  575. return jsonify({
  576. 'error': 'Missing required parameters'
  577. }), 400
  578. # 启动异步任务
  579. task = train_model_task.delay(
  580. model_type,
  581. model_name,
  582. model_description,
  583. data_type,
  584. dataset_id
  585. )
  586. # 返回任务ID
  587. return jsonify({
  588. 'task_id': task.id,
  589. 'message': 'Model training started'
  590. }), 202
  591. except Exception as e:
  592. logging.error('Failed to start async training task:', exc_info=True)
  593. return jsonify({
  594. 'error': str(e)
  595. }), 500
  596. @bp.route('/task-status/<task_id>', methods=['GET'])
  597. def get_task_status(task_id):
  598. """
  599. 获取异步任务状态的API接口
  600. """
  601. try:
  602. task = train_model_task.AsyncResult(task_id)
  603. if task.state == 'PENDING':
  604. response = {
  605. 'state': task.state,
  606. 'status': 'Task is waiting for execution'
  607. }
  608. elif task.state == 'FAILURE':
  609. response = {
  610. 'state': task.state,
  611. 'status': 'Task failed',
  612. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  613. }
  614. elif task.state == 'SUCCESS':
  615. response = {
  616. 'state': task.state,
  617. 'status': 'Task completed successfully',
  618. 'result': task.get()
  619. }
  620. else:
  621. response = {
  622. 'state': task.state,
  623. 'status': 'Task is in progress'
  624. }
  625. return jsonify(response), 200
  626. except Exception as e:
  627. return jsonify({
  628. 'error': str(e)
  629. }), 500
  630. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  631. def delete_model(model_id):
  632. """
  633. 删除指定模型的API接口
  634. @param model_id: 要删除的模型ID
  635. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  636. @return: JSON响应
  637. """
  638. Session = sessionmaker(bind=db.engine)
  639. session = Session()
  640. try:
  641. # 查询模型信息
  642. model = session.query(Models).filter_by(ModelID=model_id).first()
  643. if not model:
  644. return jsonify({'error': '未找到指定模型'}), 404
  645. dataset_id = model.DatasetID
  646. # 1. 先删除模型记录
  647. session.delete(model)
  648. session.commit()
  649. # 2. 删除模型文件
  650. model_file = f"rf_model_{model_id}.pkl"
  651. model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
  652. if os.path.exists(model_path):
  653. try:
  654. os.remove(model_path)
  655. except OSError as e:
  656. # 如果删除文件失败,回滚数据库操作
  657. session.rollback()
  658. logger.error(f'删除模型文件失败: {str(e)}')
  659. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  660. # 3. 如果需要删除关联的数据集
  661. delete_dataset = request.args.get('delete_dataset', 'false').lower() == 'true'
  662. if delete_dataset and dataset_id:
  663. try:
  664. dataset_response = delete_dataset_endpoint(dataset_id)
  665. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  666. # 如果删除数据集失败,回滚之前的操作
  667. session.rollback()
  668. return jsonify({
  669. 'error': '删除关联数据集失败',
  670. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  671. }), 500
  672. except Exception as e:
  673. session.rollback()
  674. logger.error(f'删除关联数据集失败: {str(e)}')
  675. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  676. response_data = {
  677. 'message': '模型删除成功',
  678. 'deleted_files': [model_file]
  679. }
  680. if delete_dataset:
  681. response_data['dataset_info'] = {
  682. 'dataset_id': dataset_id,
  683. 'message': '关联数据集已删除'
  684. }
  685. return jsonify(response_data), 200
  686. except Exception as e:
  687. session.rollback()
  688. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  689. return jsonify({'error': str(e)}), 500
  690. finally:
  691. session.close()
  692. # 添加一个新的API端点来清空指定数据集
  693. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  694. def clear_dataset(data_type):
  695. """
  696. 清空指定类型的数据集并递增计数
  697. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  698. @return: JSON响应
  699. """
  700. # 创建 sessionmaker 实例
  701. Session = sessionmaker(bind=db.engine)
  702. session = Session()
  703. try:
  704. # 根据数据集类型选择表
  705. if data_type == 'reduce':
  706. table = CurrentReduce
  707. table_name = 'current_reduce'
  708. elif data_type == 'reflux':
  709. table = CurrentReflux
  710. table_name = 'current_reflux'
  711. else:
  712. return jsonify({'error': '无效的数据集类型'}), 400
  713. # 清空表内容
  714. session.query(table).delete()
  715. # 重置自增主键计数器
  716. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  717. session.commit()
  718. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  719. except Exception as e:
  720. session.rollback()
  721. return jsonify({'error': str(e)}), 500
  722. finally:
  723. session.close()
  724. @bp.route('/login', methods=['POST'])
  725. def login_user():
  726. # 获取前端传来的数据
  727. data = request.get_json()
  728. name = data.get('name') # 用户名
  729. password = data.get('password') # 密码
  730. logger.info(f"Login request received: name={name}")
  731. # 检查用户名和密码是否为空
  732. if not name or not password:
  733. logger.warning("用户名和密码不能为空")
  734. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  735. try:
  736. # 查询数据库验证用户名
  737. query = "SELECT * FROM users WHERE name = :name"
  738. conn = get_db()
  739. user = conn.execute(query, {"name": name}).fetchone()
  740. if not user:
  741. logger.warning(f"用户名 '{name}' 不存在")
  742. return jsonify({"success": False, "message": "用户名不存在"}), 400
  743. # 获取数据库中存储的密码(假设密码是哈希存储的)
  744. stored_password = user[2] # 假设密码存储在数据库的第三列
  745. user_id = user[0] # 假设 id 存储在数据库的第一列
  746. # 校验密码是否正确
  747. if check_password_hash(stored_password, password):
  748. logger.info(f"User '{name}' logged in successfully.")
  749. return jsonify({
  750. "success": True,
  751. "message": "登录成功",
  752. "userId": user_id # 返回用户 ID
  753. })
  754. else:
  755. logger.warning(f"Invalid password for user '{name}'")
  756. return jsonify({"success": False, "message": "用户名或密码错误"}), 400
  757. except Exception as e:
  758. # 记录错误日志并返回错误信息
  759. logger.error(f"Error during login: {e}", exc_info=True)
  760. return jsonify({"success": False, "message": "登录失败"}), 500
  761. # 更新用户信息接口
  762. @bp.route('/update_user', methods=['POST'])
  763. def update_user():
  764. # 获取前端传来的数据
  765. data = request.get_json()
  766. # 打印收到的请求数据
  767. app.logger.info(f"Received data: {data}")
  768. user_id = data.get('userId') # 用户ID
  769. name = data.get('name') # 用户名
  770. old_password = data.get('oldPassword') # 旧密码
  771. new_password = data.get('newPassword') # 新密码
  772. logger.info(f"Update request received: user_id={user_id}, name={name}")
  773. # 校验传入的用户名和密码是否为空
  774. if not name or not old_password:
  775. logger.warning("用户名和旧密码不能为空")
  776. return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
  777. # 新密码和旧密码不能相同
  778. if new_password and old_password == new_password:
  779. logger.warning(f"新密码与旧密码相同:{name}")
  780. return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
  781. try:
  782. # 查询数据库验证用户ID
  783. query = "SELECT * FROM users WHERE id = :user_id"
  784. conn = get_db()
  785. user = conn.execute(query, {"user_id": user_id}).fetchone()
  786. if not user:
  787. logger.warning(f"用户ID '{user_id}' 不存在")
  788. return jsonify({"success": False, "message": "用户不存在"}), 400
  789. # 获取数据库中存储的密码(假设密码是哈希存储的)
  790. stored_password = user[2] # 假设密码存储在数据库的第三列
  791. # 校验旧密码是否正确
  792. if not check_password_hash(stored_password, old_password):
  793. logger.warning(f"旧密码错误:{name}")
  794. return jsonify({"success": False, "message": "旧密码错误"}), 400
  795. # 如果新密码非空,则更新新密码
  796. if new_password:
  797. hashed_new_password = hash_password(new_password)
  798. update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
  799. conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
  800. conn.commit()
  801. logger.info(f"User ID '{user_id}' password updated successfully.")
  802. # 如果用户名发生更改,则更新用户名
  803. if name != user[1]:
  804. update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
  805. conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
  806. conn.commit()
  807. logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
  808. return jsonify({"success": True, "message": "用户信息更新成功"})
  809. except Exception as e:
  810. # 记录错误日志并返回错误信息
  811. logger.error(f"Error updating user: {e}", exc_info=True)
  812. return jsonify({"success": False, "message": "更新失败"}), 500
  813. # 注册用户
  814. @bp.route('/register', methods=['POST'])
  815. def register_user():
  816. # 获取前端传来的数据
  817. data = request.get_json()
  818. name = data.get('name') # 用户名
  819. password = data.get('password') # 密码
  820. logger.info(f"Register request received: name={name}")
  821. # 检查用户名和密码是否为空
  822. if not name or not password:
  823. logger.warning("用户名和密码不能为空")
  824. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  825. # 动态获取数据库表的列名
  826. columns = get_column_names('users')
  827. logger.info(f"Database columns for 'users' table: {columns}")
  828. # 检查前端传来的数据是否包含数据库表中所有的必填字段
  829. for column in ['name', 'password']:
  830. if column not in columns:
  831. logger.error(f"缺少必填字段:{column}")
  832. return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
  833. # 对密码进行哈希处理
  834. hashed_password = hash_password(password)
  835. logger.info(f"Password hashed for user: {name}")
  836. # 插入到数据库
  837. try:
  838. # 检查用户是否已经存在
  839. query = "SELECT * FROM users WHERE name = :name"
  840. conn = get_db()
  841. user = conn.execute(query, {"name": name}).fetchone()
  842. if user:
  843. logger.warning(f"用户名 '{name}' 已存在")
  844. return jsonify({"success": False, "message": "用户名已存在"}), 400
  845. # 向数据库插入数据
  846. query = "INSERT INTO users (name, password) VALUES (:name, :password)"
  847. conn.execute(query, {"name": name, "password": hashed_password})
  848. conn.commit()
  849. logger.info(f"User '{name}' registered successfully.")
  850. return jsonify({"success": True, "message": "注册成功"})
  851. except Exception as e:
  852. # 记录错误日志并返回错误信息
  853. logger.error(f"Error registering user: {e}", exc_info=True)
  854. return jsonify({"success": False, "message": "注册失败"}), 500
  855. def get_column_names(table_name):
  856. """
  857. 动态获取数据库表的列名。
  858. """
  859. try:
  860. conn = get_db()
  861. query = f"PRAGMA table_info({table_name});"
  862. result = conn.execute(query).fetchall()
  863. conn.close()
  864. return [row[1] for row in result] # 第二列是列名
  865. except Exception as e:
  866. logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
  867. return []