routes.py 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777
  1. import sqlite3
  2. from io import BytesIO
  3. from flask import Blueprint, request, jsonify,send_from_directory, current_app, send_file, session
  4. from werkzeug.security import check_password_hash, generate_password_hash
  5. from werkzeug.utils import secure_filename
  6. from .model import predict, train_and_save_model, calculate_model_score
  7. import pandas as pd
  8. from . import db # 从 app 包导入 db 实例
  9. from sqlalchemy.engine.reflection import Inspector
  10. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  11. import os
  12. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  13. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  14. predict_to_Q, Q_to_t_ha, create_kriging
  15. from sqlalchemy.orm import sessionmaker
  16. import logging
  17. from sqlalchemy import text, select, MetaData, Table, func
  18. from .tasks import train_model_task
  19. from datetime import datetime
  20. import uuid
  21. # 配置日志
  22. logging.basicConfig(level=logging.DEBUG)
  23. logger = logging.getLogger(__name__)
  24. # 创建蓝图 (Blueprint),用于分离路由
  25. bp = Blueprint('routes', __name__)
  26. # 封装数据库连接函数
  27. def get_db_connection():
  28. return sqlite3.connect('software_intro.db')
  29. # 密码加密
  30. def hash_password(password):
  31. return generate_password_hash(password)
  32. def get_db():
  33. """ 获取数据库连接 """
  34. return sqlite3.connect(current_app.config['DATABASE'])
  35. # 添加一个新的辅助函数来检查数据集大小并触发训练
  36. def check_and_trigger_training(session, dataset_type, dataset_df):
  37. """
  38. 检查当前数据集大小是否跨越新的阈值点并触发训练
  39. Args:
  40. session: 数据库会话
  41. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  42. dataset_df: 数据集 DataFrame
  43. Returns:
  44. tuple: (是否触发训练, 任务ID)
  45. """
  46. try:
  47. # 根据数据集类型选择表
  48. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  49. # 获取当前记录数
  50. current_count = session.query(func.count()).select_from(table).scalar()
  51. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  52. new_records = len(dataset_df) # 需要从上层函数传入
  53. # 计算新增数据前的记录数
  54. previous_count = current_count - new_records
  55. # 设置阈值
  56. THRESHOLD = current_app.config['THRESHOLD']
  57. # 计算上一个阈值点(基于新增前的数据量)
  58. last_threshold = previous_count // THRESHOLD * THRESHOLD
  59. # 计算当前所在阈值点
  60. current_threshold = current_count // THRESHOLD * THRESHOLD
  61. # 检查是否跨越了新的阈值点
  62. if current_threshold > last_threshold and current_count >= THRESHOLD:
  63. # 触发异步训练任务
  64. task = train_model_task.delay(
  65. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  66. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  67. model_description=f'Auto trained model at {current_threshold} records threshold',
  68. data_type=dataset_type
  69. )
  70. return True, task.id
  71. return False, None
  72. except Exception as e:
  73. logging.error(f"检查并触发训练失败: {str(e)}")
  74. return False, None
  75. @bp.route('/upload-dataset', methods=['POST'])
  76. def upload_dataset():
  77. # 创建 session
  78. Session = sessionmaker(bind=db.engine)
  79. session = Session()
  80. try:
  81. if 'file' not in request.files:
  82. return jsonify({'error': 'No file part'}), 400
  83. file = request.files['file']
  84. if file.filename == '' or not allowed_file(file.filename):
  85. return jsonify({'error': 'No selected file or invalid file type'}), 400
  86. dataset_name = request.form.get('dataset_name')
  87. dataset_description = request.form.get('dataset_description', 'No description provided')
  88. dataset_type = request.form.get('dataset_type')
  89. if not dataset_type:
  90. return jsonify({'error': 'Dataset type is required'}), 400
  91. new_dataset = Datasets(
  92. Dataset_name=dataset_name,
  93. Dataset_description=dataset_description,
  94. Row_count=0,
  95. Status='Datasets_upgraded',
  96. Dataset_type=dataset_type,
  97. Uploaded_at=datetime.now()
  98. )
  99. session.add(new_dataset)
  100. session.commit()
  101. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  102. upload_folder = current_app.config['UPLOAD_FOLDER']
  103. file_path = os.path.join(upload_folder, unique_filename)
  104. file.save(file_path)
  105. dataset_df = pd.read_excel(file_path)
  106. new_dataset.Row_count = len(dataset_df)
  107. new_dataset.Status = 'excel_file_saved success'
  108. session.commit()
  109. # 处理列名
  110. dataset_df = clean_column_names(dataset_df)
  111. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  112. column_types = infer_column_types(dataset_df)
  113. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  114. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  115. # 根据 dataset_type 决定插入到哪个已有表
  116. if dataset_type == 'reduce':
  117. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  118. elif dataset_type == 'reflux':
  119. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  120. session.commit()
  121. # 在完成数据插入后,检查是否需要触发训练
  122. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  123. response_data = {
  124. 'message': f'Dataset {dataset_name} uploaded successfully!',
  125. 'dataset_id': new_dataset.Dataset_ID,
  126. 'filename': unique_filename,
  127. 'training_triggered': training_triggered
  128. }
  129. if training_triggered:
  130. response_data['task_id'] = task_id
  131. response_data['message'] += ' Auto-training has been triggered.'
  132. return jsonify(response_data), 201
  133. except Exception as e:
  134. session.rollback()
  135. logging.error('Failed to process the dataset upload:', exc_info=True)
  136. return jsonify({'error': str(e)}), 500
  137. finally:
  138. # 确保 session 总是被关闭
  139. if session:
  140. session.close()
  141. @bp.route('/train-and-save-model', methods=['POST'])
  142. def train_and_save_model_endpoint():
  143. # 创建 sessionmaker 实例
  144. Session = sessionmaker(bind=db.engine)
  145. session = Session()
  146. data = request.get_json()
  147. # 从请求中解析参数
  148. model_type = data.get('model_type')
  149. model_name = data.get('model_name')
  150. model_description = data.get('model_description')
  151. data_type = data.get('data_type')
  152. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  153. try:
  154. # 调用训练和保存模型的函数
  155. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  156. model_id = result[1] if result else None
  157. # 计算模型评分
  158. if model_id:
  159. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  160. if model_info:
  161. score = calculate_model_score(model_info)
  162. # 更新模型评分
  163. model_info.Performance_score = score
  164. session.commit()
  165. result = {'model_id': model_id, 'model_score': score}
  166. # 返回成功响应
  167. return jsonify({
  168. 'message': 'Model trained and saved successfully',
  169. 'result': result
  170. }), 200
  171. except Exception as e:
  172. session.rollback()
  173. logging.error('Failed to process the model training:', exc_info=True)
  174. return jsonify({
  175. 'error': 'Failed to train and save model',
  176. 'message': str(e)
  177. }), 500
  178. finally:
  179. session.close()
  180. @bp.route('/predict', methods=['POST'])
  181. def predict_route():
  182. # 创建 sessionmaker 实例
  183. Session = sessionmaker(bind=db.engine)
  184. session = Session()
  185. try:
  186. data = request.get_json()
  187. model_id = data.get('model_id') # 提取模型名称
  188. parameters = data.get('parameters', {}) # 提取所有变量
  189. # 根据model_id获取模型Data_type
  190. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  191. if not model_info:
  192. return jsonify({'error': 'Model not found'}), 404
  193. data_type = model_info.Data_type
  194. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  195. # 如果为reduce,则不需要传入target_ph
  196. if data_type == 'reduce':
  197. # 获取传入的init_ph、target_ph参数
  198. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  199. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  200. # 从输入数据中删除'target_pH'列
  201. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  202. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  203. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  204. if data_type == 'reduce':
  205. predictions = predictions[0]
  206. # 将预测结果转换为Q
  207. Q = predict_to_Q(predictions, init_ph, target_ph)
  208. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  209. print(predictions)
  210. return jsonify({'result': predictions}), 200
  211. except Exception as e:
  212. logging.error('Failed to predict:', exc_info=True)
  213. return jsonify({'error': str(e)}), 400
  214. # 为指定模型计算评分Performance_score,需要提供model_id
  215. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  216. def score_model(model_id):
  217. # 创建 sessionmaker 实例
  218. Session = sessionmaker(bind=db.engine)
  219. session = Session()
  220. try:
  221. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  222. if not model_info:
  223. return jsonify({'error': 'Model not found'}), 404
  224. # 计算模型评分
  225. score = calculate_model_score(model_info)
  226. # 更新模型记录中的评分
  227. model_info.Performance_score = score
  228. session.commit()
  229. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  230. except Exception as e:
  231. logging.error('Failed to process the dataset upload:', exc_info=True)
  232. return jsonify({'error': str(e)}), 400
  233. finally:
  234. session.close()
  235. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  236. def delete_dataset_endpoint(dataset_id):
  237. """
  238. 删除数据集的API接口
  239. @param dataset_id: 要删除的数据集ID
  240. @return: JSON响应
  241. """
  242. # 创建 sessionmaker 实例
  243. Session = sessionmaker(bind=db.engine)
  244. session = Session()
  245. try:
  246. # 查询数据集
  247. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  248. if not dataset:
  249. return jsonify({'error': '未找到数据集'}), 404
  250. # 检查是否有模型使用了该数据集
  251. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  252. if models_using_dataset:
  253. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  254. return jsonify({
  255. 'error': '无法删除数据集,因为以下模型正在使用它',
  256. 'models': models_info
  257. }), 400
  258. # 删除Excel文件
  259. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  260. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  261. if os.path.exists(file_path):
  262. try:
  263. os.remove(file_path)
  264. except OSError as e:
  265. logger.error(f'删除文件失败: {str(e)}')
  266. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  267. # 删除数据表
  268. table_name = f"dataset_{dataset.Dataset_ID}"
  269. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  270. # 删除数据集记录
  271. session.delete(dataset)
  272. session.commit()
  273. return jsonify({
  274. 'message': '数据集删除成功',
  275. 'deleted_files': [filename]
  276. }), 200
  277. except Exception as e:
  278. session.rollback()
  279. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  280. return jsonify({'error': str(e)}), 500
  281. finally:
  282. session.close()
  283. @bp.route('/tables', methods=['GET'])
  284. def list_tables():
  285. engine = db.engine # 使用 db 实例的 engine
  286. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  287. table_names = inspector.get_table_names() # 获取所有表名
  288. return jsonify(table_names) # 以 JSON 形式返回表名列表
  289. @bp.route('/models/<int:model_id>', methods=['GET'])
  290. def get_model(model_id):
  291. """
  292. 获取单个模型信息的API接口
  293. @param model_id: 模型ID
  294. @return: JSON响应
  295. """
  296. Session = sessionmaker(bind=db.engine)
  297. session = Session()
  298. try:
  299. model = session.query(Models).filter_by(ModelID=model_id).first()
  300. if model:
  301. return jsonify({
  302. 'ModelID': model.ModelID,
  303. 'Model_name': model.Model_name,
  304. 'Model_type': model.Model_type,
  305. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  306. 'Description': model.Description,
  307. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  308. 'Data_type': model.Data_type
  309. })
  310. else:
  311. return jsonify({'message': '未找到模型'}), 404
  312. except Exception as e:
  313. logger.error(f'获取模型信息失败: {str(e)}')
  314. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  315. finally:
  316. session.close()
  317. @bp.route('/model-parameters', methods=['GET'])
  318. def get_all_model_parameters():
  319. """
  320. 获取所有模型参数的API接口
  321. @return: JSON响应
  322. """
  323. Session = sessionmaker(bind=db.engine)
  324. session = Session()
  325. try:
  326. parameters = session.query(ModelParameters).all()
  327. if parameters:
  328. result = [
  329. {
  330. 'ParamID': param.ParamID,
  331. 'ModelID': param.ModelID,
  332. 'ParamName': param.ParamName,
  333. 'ParamValue': param.ParamValue
  334. }
  335. for param in parameters
  336. ]
  337. return jsonify(result)
  338. else:
  339. return jsonify({'message': '未找到任何参数'}), 404
  340. except Exception as e:
  341. logger.error(f'获取所有模型参数失败: {str(e)}')
  342. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  343. finally:
  344. session.close()
  345. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  346. def get_model_parameters(model_id):
  347. try:
  348. model = Models.query.filter_by(ModelID=model_id).first()
  349. if model:
  350. # 获取该模型的所有参数
  351. parameters = [
  352. {
  353. 'ParamID': param.ParamID,
  354. 'ParamName': param.ParamName,
  355. 'ParamValue': param.ParamValue
  356. }
  357. for param in model.parameters
  358. ]
  359. # 返回模型参数信息
  360. return jsonify({
  361. 'ModelID': model.ModelID,
  362. 'ModelName': model.ModelName,
  363. 'ModelType': model.ModelType,
  364. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  365. 'Description': model.Description,
  366. 'Parameters': parameters
  367. })
  368. else:
  369. return jsonify({'message': 'Model not found'}), 404
  370. except Exception as e:
  371. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  372. # 定义添加数据库记录的 API 接口
  373. @bp.route('/add_item', methods=['POST'])
  374. def add_item():
  375. """
  376. 接收 JSON 格式的请求体,包含表名和要插入的数据。
  377. 尝试将数据插入到指定的表中,并进行字段查重。
  378. :return:
  379. """
  380. try:
  381. # 确保请求体是 JSON 格式
  382. data = request.get_json()
  383. if not data:
  384. raise ValueError("No JSON data provided")
  385. table_name = data.get('table')
  386. item_data = data.get('item')
  387. if not table_name or not item_data:
  388. return jsonify({'error': 'Missing table name or item data'}), 400
  389. # 定义各个表的字段查重规则
  390. duplicate_check_rules = {
  391. 'users': ['email', 'username'],
  392. 'products': ['product_code'],
  393. 'current_reduce': [ 'Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
  394. 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
  395. # 其他表和规则
  396. }
  397. # 获取该表的查重字段
  398. duplicate_columns = duplicate_check_rules.get(table_name)
  399. if not duplicate_columns:
  400. return jsonify({'error': 'No duplicate check rule for this table'}), 400
  401. # 动态构建查询条件,逐一检查是否有重复数据
  402. condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
  403. duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
  404. result = db.session.execute(text(duplicate_query), item_data).fetchone()
  405. if result:
  406. return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
  407. # 动态构建 SQL 语句,进行插入操作
  408. columns = ', '.join(item_data.keys())
  409. placeholders = ', '.join([f":{key}" for key in item_data.keys()])
  410. sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
  411. # 直接执行插入操作,无需显式的事务管理
  412. db.session.execute(text(sql), item_data)
  413. # 提交事务
  414. db.session.commit()
  415. # 返回成功响应
  416. return jsonify({'success': True, 'message': 'Item added successfully'}), 201
  417. except ValueError as e:
  418. return jsonify({'error': str(e)}), 400
  419. except KeyError as e:
  420. return jsonify({'error': f'Missing data field: {e}'}), 400
  421. except sqlite3.IntegrityError as e:
  422. return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
  423. except sqlite3.Error as e:
  424. return jsonify({'error': '数据库错误', 'details': str(e)}), 500
  425. @bp.route('/delete_item', methods=['POST'])
  426. def delete_item():
  427. """
  428. 删除数据库记录的 API 接口
  429. """
  430. data = request.get_json()
  431. table_name = data.get('table')
  432. condition = data.get('condition')
  433. # 检查表名和条件是否提供
  434. if not table_name or not condition:
  435. return jsonify({
  436. "success": False,
  437. "message": "缺少表名或条件参数"
  438. }), 400
  439. # 尝试从条件字符串中解析键和值
  440. try:
  441. key, value = condition.split('=')
  442. key = key.strip() # 去除多余的空格
  443. value = value.strip().strip("'\"") # 去除多余的空格和引号
  444. except ValueError:
  445. return jsonify({
  446. "success": False,
  447. "message": "条件格式错误,应为 'key=value'"
  448. }), 400
  449. # 准备 SQL 删除语句
  450. sql = f"DELETE FROM {table_name} WHERE {key} = :value"
  451. try:
  452. # 使用 SQLAlchemy 执行删除
  453. with db.session.begin():
  454. result = db.session.execute(text(sql), {"value": value})
  455. # 检查是否有记录被删除
  456. if result.rowcount == 0:
  457. return jsonify({
  458. "success": False,
  459. "message": "未找到符合条件的记录"
  460. }), 404
  461. return jsonify({
  462. "success": True,
  463. "message": "记录删除成功"
  464. }), 200
  465. except Exception as e:
  466. return jsonify({
  467. "success": False,
  468. "message": f"删除失败: {e}"
  469. }), 500
  470. # 定义修改数据库记录的 API 接口
  471. @bp.route('/update_item', methods=['PUT'])
  472. def update_record():
  473. """
  474. 接收 JSON 格式的请求体,包含表名和更新的数据。
  475. 尝试更新指定的记录。
  476. """
  477. data = request.get_json()
  478. # 检查必要的数据是否提供
  479. if not data or 'table' not in data or 'item' not in data:
  480. return jsonify({
  481. "success": False,
  482. "message": "请求数据不完整"
  483. }), 400
  484. table_name = data['table']
  485. item = data['item']
  486. # 假设 item 的第一个键是 ID
  487. id_key = next(iter(item.keys())) # 获取第一个键
  488. record_id = item.get(id_key)
  489. if not record_id:
  490. return jsonify({
  491. "success": False,
  492. "message": "缺少记录 ID"
  493. }), 400
  494. # 获取更新的字段和值
  495. updates = {key: value for key, value in item.items() if key != id_key}
  496. if not updates:
  497. return jsonify({
  498. "success": False,
  499. "message": "没有提供需要更新的字段"
  500. }), 400
  501. # 动态构建 SQL
  502. set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
  503. sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
  504. # 添加 ID 到参数
  505. updates['id_value'] = record_id
  506. try:
  507. # 使用 SQLAlchemy 执行更新
  508. with db.session.begin():
  509. result = db.session.execute(text(sql), updates)
  510. # 检查是否有更新的记录
  511. if result.rowcount == 0:
  512. return jsonify({
  513. "success": False,
  514. "message": "未找到要更新的记录"
  515. }), 404
  516. return jsonify({
  517. "success": True,
  518. "message": "数据更新成功"
  519. }), 200
  520. except Exception as e:
  521. # 捕获所有异常并返回
  522. return jsonify({
  523. "success": False,
  524. "message": f"更新失败: {str(e)}"
  525. }), 500
  526. # 定义查询数据库记录的 API 接口
  527. @bp.route('/search/record', methods=['GET'])
  528. def sql_search():
  529. """
  530. 接收 JSON 格式的请求体,包含表名和要查询的 ID。
  531. 尝试查询指定 ID 的记录并返回结果。
  532. :return:
  533. """
  534. try:
  535. data = request.get_json()
  536. # 表名
  537. sql_table = data['table']
  538. # 要搜索的 ID
  539. Id = data['id']
  540. # 连接到数据库
  541. cur = db.cursor()
  542. # 构造查询语句
  543. sql = f"SELECT * FROM {sql_table} WHERE id = ?"
  544. # 执行查询
  545. cur.execute(sql, (Id,))
  546. # 获取查询结果
  547. rows = cur.fetchall()
  548. column_names = [desc[0] for desc in cur.description]
  549. # 检查是否有结果
  550. if not rows:
  551. return jsonify({'error': '未查找到对应数据。'}), 400
  552. # 构造响应数据
  553. results = []
  554. for row in rows:
  555. result = {column_names[i]: row[i] for i in range(len(row))}
  556. results.append(result)
  557. # 关闭游标和数据库连接
  558. cur.close()
  559. db.close()
  560. # 返回 JSON 响应
  561. return jsonify(results), 200
  562. except sqlite3.Error as e:
  563. # 如果发生数据库错误,返回错误信息
  564. return jsonify({'error': str(e)}), 400
  565. except KeyError as e:
  566. # 如果请求数据中缺少必要的键,返回错误信息
  567. return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
  568. # 定义提供数据库列表,用于展示表格的 API 接口
  569. @bp.route('/table', methods=['POST'])
  570. def get_table():
  571. data = request.get_json()
  572. table_name = data.get('table')
  573. if not table_name:
  574. return jsonify({'error': '需要表名'}), 400
  575. try:
  576. # 创建 sessionmaker 实例
  577. Session = sessionmaker(bind=db.engine)
  578. session = Session()
  579. # 动态获取表的元数据
  580. metadata = MetaData()
  581. table = Table(table_name, metadata, autoload_with=db.engine)
  582. # 从数据库中查询所有记录
  583. query = select(table)
  584. result = session.execute(query).fetchall()
  585. # 将结果转换为列表字典形式
  586. rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
  587. # 获取列名
  588. headers = [column.name for column in table.columns]
  589. return jsonify(rows=rows, headers=headers), 200
  590. except Exception as e:
  591. return jsonify({'error': str(e)}), 400
  592. finally:
  593. # 关闭 session
  594. session.close()
  595. @bp.route('/train-model-async', methods=['POST'])
  596. def train_model_async():
  597. """
  598. 异步训练模型的API接口
  599. """
  600. try:
  601. data = request.get_json()
  602. # 从请求中获取参数
  603. model_type = data.get('model_type')
  604. model_name = data.get('model_name')
  605. model_description = data.get('model_description')
  606. data_type = data.get('data_type')
  607. dataset_id = data.get('dataset_id', None)
  608. # 验证必要参数
  609. if not all([model_type, model_name, data_type]):
  610. return jsonify({
  611. 'error': 'Missing required parameters'
  612. }), 400
  613. # 如果提供了dataset_id,验证数据集是否存在
  614. if dataset_id:
  615. Session = sessionmaker(bind=db.engine)
  616. session = Session()
  617. try:
  618. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  619. if not dataset:
  620. return jsonify({
  621. 'error': f'Dataset with ID {dataset_id} not found'
  622. }), 404
  623. finally:
  624. session.close()
  625. # 启动异步任务
  626. task = train_model_task.delay(
  627. model_type=model_type,
  628. model_name=model_name,
  629. model_description=model_description,
  630. data_type=data_type,
  631. dataset_id=dataset_id
  632. )
  633. # 返回任务ID
  634. return jsonify({
  635. 'task_id': task.id,
  636. 'message': 'Model training started'
  637. }), 202
  638. except Exception as e:
  639. logging.error('Failed to start async training task:', exc_info=True)
  640. return jsonify({
  641. 'error': str(e)
  642. }), 500
  643. @bp.route('/task-status/<task_id>', methods=['GET'])
  644. def get_task_status(task_id):
  645. """
  646. 获取异步任务状态的API接口
  647. """
  648. try:
  649. task = train_model_task.AsyncResult(task_id)
  650. if task.state == 'PENDING':
  651. response = {
  652. 'state': task.state,
  653. 'status': 'Task is waiting for execution'
  654. }
  655. elif task.state == 'FAILURE':
  656. response = {
  657. 'state': task.state,
  658. 'status': 'Task failed',
  659. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  660. }
  661. elif task.state == 'SUCCESS':
  662. response = {
  663. 'state': task.state,
  664. 'status': 'Task completed successfully',
  665. 'result': task.get()
  666. }
  667. else:
  668. response = {
  669. 'state': task.state,
  670. 'status': 'Task is in progress'
  671. }
  672. return jsonify(response), 200
  673. except Exception as e:
  674. return jsonify({
  675. 'error': str(e)
  676. }), 500
  677. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  678. def delete_model_route(model_id):
  679. # 将URL参数转换为布尔值
  680. delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
  681. # 调用原始函数
  682. return delete_model(model_id, delete_dataset=delete_dataset_param)
  683. def delete_model(model_id, delete_dataset=False):
  684. """
  685. 删除指定模型的API接口
  686. @param model_id: 要删除的模型ID
  687. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  688. @return: JSON响应
  689. """
  690. Session = sessionmaker(bind=db.engine)
  691. session = Session()
  692. try:
  693. # 查询模型信息
  694. model = session.query(Models).filter_by(ModelID=model_id).first()
  695. if not model:
  696. return jsonify({'error': '未找到指定模型'}), 404
  697. dataset_id = model.DatasetID
  698. # 1. 先删除模型记录
  699. session.delete(model)
  700. session.commit()
  701. # 2. 删除模型文件
  702. model_file = f"rf_model_{model_id}.pkl"
  703. model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
  704. if os.path.exists(model_path):
  705. try:
  706. os.remove(model_path)
  707. except OSError as e:
  708. # 如果删除文件失败,回滚数据库操作
  709. session.rollback()
  710. logger.error(f'删除模型文件失败: {str(e)}')
  711. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  712. # 3. 如果需要删除关联的数据集
  713. if delete_dataset and dataset_id:
  714. try:
  715. dataset_response = delete_dataset_endpoint(dataset_id)
  716. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  717. # 如果删除数据集失败,回滚之前的操作
  718. session.rollback()
  719. return jsonify({
  720. 'error': '删除关联数据集失败',
  721. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  722. }), 500
  723. except Exception as e:
  724. session.rollback()
  725. logger.error(f'删除关联数据集失败: {str(e)}')
  726. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  727. response_data = {
  728. 'message': '模型删除成功',
  729. 'deleted_files': [model_file]
  730. }
  731. if delete_dataset:
  732. response_data['dataset_info'] = {
  733. 'dataset_id': dataset_id,
  734. 'message': '关联数据集已删除'
  735. }
  736. return jsonify(response_data), 200
  737. except Exception as e:
  738. session.rollback()
  739. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  740. return jsonify({'error': str(e)}), 500
  741. finally:
  742. session.close()
  743. # 添加一个新的API端点来清空指定数据集
  744. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  745. def clear_dataset(data_type):
  746. """
  747. 清空指定类型的数据集并递增计数
  748. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  749. @return: JSON响应
  750. """
  751. # 创建 sessionmaker 实例
  752. Session = sessionmaker(bind=db.engine)
  753. session = Session()
  754. try:
  755. # 根据数据集类型选择表
  756. if data_type == 'reduce':
  757. table = CurrentReduce
  758. table_name = 'current_reduce'
  759. elif data_type == 'reflux':
  760. table = CurrentReflux
  761. table_name = 'current_reflux'
  762. else:
  763. return jsonify({'error': '无效的数据集类型'}), 400
  764. # 清空表内容
  765. session.query(table).delete()
  766. # 重置自增主键计数器
  767. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  768. session.commit()
  769. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  770. except Exception as e:
  771. session.rollback()
  772. return jsonify({'error': str(e)}), 500
  773. finally:
  774. session.close()
  775. # 更新用户信息接口
  776. @bp.route('/update_user', methods=['POST'])
  777. def update_user():
  778. # 获取前端传来的数据
  779. data = request.get_json()
  780. # 打印收到的请求数据
  781. current_app.logger.info(f"Received data: {data}")
  782. user_id = data.get('userId') # 用户ID
  783. name = data.get('name') # 用户名
  784. old_password = data.get('oldPassword') # 旧密码
  785. new_password = data.get('newPassword') # 新密码
  786. logger.info(f"Update request received: user_id={user_id}, name={name}")
  787. # 校验传入的用户名和密码是否为空
  788. if not name or not old_password:
  789. logger.warning("用户名和旧密码不能为空")
  790. return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
  791. # 新密码和旧密码不能相同
  792. if new_password and old_password == new_password:
  793. logger.warning(f"新密码与旧密码相同:{name}")
  794. return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
  795. try:
  796. # 查询数据库验证用户ID
  797. query = "SELECT * FROM users WHERE id = :user_id"
  798. conn = get_db()
  799. user = conn.execute(query, {"user_id": user_id}).fetchone()
  800. if not user:
  801. logger.warning(f"用户ID '{user_id}' 不存在")
  802. return jsonify({"success": False, "message": "用户不存在"}), 400
  803. # 获取数据库中存储的密码(假设密码是哈希存储的)
  804. stored_password = user[2] # 假设密码存储在数据库的第三列
  805. # 校验旧密码是否正确
  806. if not check_password_hash(stored_password, old_password):
  807. logger.warning(f"旧密码错误:{name}")
  808. return jsonify({"success": False, "message": "旧密码错误"}), 400
  809. # 如果新密码非空,则更新新密码
  810. if new_password:
  811. hashed_new_password = hash_password(new_password)
  812. update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
  813. conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
  814. conn.commit()
  815. logger.info(f"User ID '{user_id}' password updated successfully.")
  816. # 如果用户名发生更改,则更新用户名
  817. if name != user[1]:
  818. update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
  819. conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
  820. conn.commit()
  821. logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
  822. return jsonify({"success": True, "message": "用户信息更新成功"})
  823. except Exception as e:
  824. # 记录错误日志并返回错误信息
  825. logger.error(f"Error updating user: {e}", exc_info=True)
  826. return jsonify({"success": False, "message": "更新失败"}), 500
  827. # 注册用户
  828. @bp.route('/register', methods=['POST'])
  829. def register_user():
  830. # 获取前端传来的数据
  831. data = request.get_json()
  832. name = data.get('name') # 用户名
  833. password = data.get('password') # 密码
  834. logger.info(f"Register request received: name={name}")
  835. # 检查用户名和密码是否为空
  836. if not name or not password:
  837. logger.warning("用户名和密码不能为空")
  838. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  839. # 动态获取数据库表的列名
  840. columns = get_column_names('users')
  841. logger.info(f"Database columns for 'users' table: {columns}")
  842. # 检查前端传来的数据是否包含数据库表中所有的必填字段
  843. for column in ['name', 'password']:
  844. if column not in columns:
  845. logger.error(f"缺少必填字段:{column}")
  846. return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
  847. # 对密码进行哈希处理
  848. hashed_password = hash_password(password)
  849. logger.info(f"Password hashed for user: {name}")
  850. # 插入到数据库
  851. try:
  852. # 检查用户是否已经存在
  853. query = "SELECT * FROM users WHERE name = :name"
  854. conn = get_db()
  855. user = conn.execute(query, {"name": name}).fetchone()
  856. if user:
  857. logger.warning(f"用户名 '{name}' 已存在")
  858. return jsonify({"success": False, "message": "用户名已存在"}), 400
  859. # 向数据库插入数据
  860. query = "INSERT INTO users (name, password) VALUES (:name, :password)"
  861. conn.execute(query, {"name": name, "password": hashed_password})
  862. conn.commit()
  863. logger.info(f"User '{name}' registered successfully.")
  864. return jsonify({"success": True, "message": "注册成功"})
  865. except Exception as e:
  866. # 记录错误日志并返回错误信息
  867. logger.error(f"Error registering user: {e}", exc_info=True)
  868. return jsonify({"success": False, "message": "注册失败"}), 500
  869. def get_column_names(table_name):
  870. """
  871. 动态获取数据库表的列名。
  872. """
  873. try:
  874. conn = get_db()
  875. query = f"PRAGMA table_info({table_name});"
  876. result = conn.execute(query).fetchall()
  877. conn.close()
  878. return [row[1] for row in result] # 第二列是列名
  879. except Exception as e:
  880. logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
  881. return []
  882. # 导出数据
  883. @bp.route('/export_data', methods=['GET'])
  884. def export_data():
  885. table_name = request.args.get('table')
  886. file_format = request.args.get('format', 'excel').lower()
  887. if not table_name:
  888. return jsonify({'error': '缺少表名参数'}), 400
  889. if not table_name.isidentifier():
  890. return jsonify({'error': '无效的表名'}), 400
  891. try:
  892. conn = get_db()
  893. query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
  894. table_exists = conn.execute(query, (table_name,)).fetchone()
  895. if not table_exists:
  896. return jsonify({'error': f"表 {table_name} 不存在"}), 404
  897. query = f"SELECT * FROM {table_name};"
  898. df = pd.read_sql(query, conn)
  899. output = BytesIO()
  900. if file_format == 'csv':
  901. df.to_csv(output, index=False, encoding='utf-8')
  902. output.seek(0)
  903. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
  904. elif file_format == 'excel':
  905. df.to_excel(output, index=False, engine='openpyxl')
  906. output.seek(0)
  907. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
  908. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  909. else:
  910. return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
  911. except Exception as e:
  912. logger.error(f"Error in export_data: {e}", exc_info=True)
  913. return jsonify({'error': str(e)}), 500
  914. # 导入数据接口
  915. @bp.route('/import_data', methods=['POST'])
  916. def import_data():
  917. logger.debug("Import data endpoint accessed.")
  918. if 'file' not in request.files:
  919. logger.error("No file in request.")
  920. return jsonify({'success': False, 'message': '文件缺失'}), 400
  921. file = request.files['file']
  922. table_name = request.form.get('table')
  923. if not table_name:
  924. logger.error("Missing table name parameter.")
  925. return jsonify({'success': False, 'message': '缺少表名参数'}), 400
  926. if file.filename == '':
  927. logger.error("No file selected.")
  928. return jsonify({'success': False, 'message': '未选择文件'}), 400
  929. try:
  930. # 保存文件到临时路径
  931. temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
  932. file.save(temp_path)
  933. logger.debug(f"File saved to temporary path: {temp_path}")
  934. # 根据文件类型读取文件
  935. if file.filename.endswith('.xlsx'):
  936. df = pd.read_excel(temp_path)
  937. elif file.filename.endswith('.csv'):
  938. df = pd.read_csv(temp_path)
  939. else:
  940. logger.error("Unsupported file format.")
  941. return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
  942. # 获取数据库列名
  943. db_columns = get_column_names(table_name)
  944. if 'id' in db_columns:
  945. db_columns.remove('id') # 假设 id 列是自增的,不需要处理
  946. if not set(db_columns).issubset(set(df.columns)):
  947. logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
  948. return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
  949. # 清洗数据并删除空值行
  950. df_cleaned = df[db_columns].dropna()
  951. # 统一数据类型,避免 int 和 float 合并问题
  952. df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
  953. # 获取现有的数据
  954. conn = get_db()
  955. with conn:
  956. existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
  957. # 查找重复数据
  958. duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
  959. # 如果有重复数据,删除它们
  960. df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
  961. logger.warning(f"Duplicate data detected and removed: {duplicates}")
  962. # 获取导入前后的数据量
  963. total_data = len(df_cleaned) + len(duplicates)
  964. new_data = len(df_cleaned)
  965. duplicate_data = len(duplicates)
  966. # 导入不重复的数据
  967. df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
  968. logger.debug(f"Imported {new_data} new records into the database.")
  969. # 删除临时文件
  970. os.remove(temp_path)
  971. logger.debug(f"Temporary file removed: {temp_path}")
  972. # 返回结果
  973. return jsonify({
  974. 'success': True,
  975. 'message': '数据导入成功',
  976. 'total_data': total_data,
  977. 'new_data': new_data,
  978. 'duplicate_data': duplicate_data
  979. }), 200
  980. except Exception as e:
  981. logger.error(f"Import failed: {e}", exc_info=True)
  982. return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
  983. # 模板下载接口
  984. @bp.route('/download_template', methods=['GET'])
  985. def download_template():
  986. """
  987. 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
  988. """
  989. table_name = request.args.get('table')
  990. if not table_name:
  991. return jsonify({'error': '表名参数缺失'}), 400
  992. columns = get_column_names(table_name)
  993. if not columns:
  994. return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
  995. # 不包括 ID 列
  996. if 'id' in columns:
  997. columns.remove('id')
  998. df = pd.DataFrame(columns=columns)
  999. file_format = request.args.get('format', 'excel').lower()
  1000. try:
  1001. if file_format == 'csv':
  1002. output = BytesIO()
  1003. df.to_csv(output, index=False, encoding='utf-8')
  1004. output.seek(0)
  1005. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
  1006. mimetype='text/csv')
  1007. else:
  1008. output = BytesIO()
  1009. df.to_excel(output, index=False, engine='openpyxl')
  1010. output.seek(0)
  1011. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
  1012. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  1013. except Exception as e:
  1014. logger.error(f"Failed to generate template: {e}", exc_info=True)
  1015. return jsonify({'error': '生成模板文件失败'}), 500
  1016. @bp.route('/update-threshold', methods=['POST'])
  1017. def update_threshold():
  1018. """
  1019. 更新训练阈值的API接口
  1020. @body_param threshold: 新的阈值值(整数)
  1021. @return: JSON响应
  1022. """
  1023. try:
  1024. data = request.get_json()
  1025. new_threshold = data.get('threshold')
  1026. # 验证新阈值
  1027. if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
  1028. return jsonify({
  1029. 'error': '无效的阈值值,必须为正数'
  1030. }), 400
  1031. # 更新当前应用的阈值配置
  1032. current_app.config['THRESHOLD'] = int(new_threshold)
  1033. return jsonify({
  1034. 'success': True,
  1035. 'message': f'阈值已更新为 {new_threshold}',
  1036. 'new_threshold': new_threshold
  1037. })
  1038. except Exception as e:
  1039. logging.error(f"更新阈值失败: {str(e)}")
  1040. return jsonify({
  1041. 'error': f'更新阈值失败: {str(e)}'
  1042. }), 500
  1043. @bp.route('/get-threshold', methods=['GET'])
  1044. def get_threshold():
  1045. """
  1046. 获取当前训练阈值的API接口
  1047. @return: JSON响应
  1048. """
  1049. try:
  1050. current_threshold = current_app.config['THRESHOLD']
  1051. default_threshold = current_app.config['DEFAULT_THRESHOLD']
  1052. return jsonify({
  1053. 'current_threshold': current_threshold,
  1054. 'default_threshold': default_threshold
  1055. })
  1056. except Exception as e:
  1057. logging.error(f"获取阈值失败: {str(e)}")
  1058. return jsonify({
  1059. 'error': f'获取阈值失败: {str(e)}'
  1060. }), 500
  1061. @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
  1062. def set_current_dataset(data_type, dataset_id):
  1063. """
  1064. 将指定数据集设置为current数据集
  1065. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1066. @param dataset_id: 要设置为current的数据集ID
  1067. @return: JSON响应
  1068. """
  1069. Session = sessionmaker(bind=db.engine)
  1070. session = Session()
  1071. try:
  1072. # 验证数据集存在且类型匹配
  1073. dataset = session.query(Datasets)\
  1074. .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
  1075. .first()
  1076. if not dataset:
  1077. return jsonify({
  1078. 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
  1079. }), 404
  1080. # 根据数据类型选择表
  1081. if data_type == 'reduce':
  1082. table = CurrentReduce
  1083. table_name = 'current_reduce'
  1084. elif data_type == 'reflux':
  1085. table = CurrentReflux
  1086. table_name = 'current_reflux'
  1087. else:
  1088. return jsonify({'error': '无效的数据集类型'}), 400
  1089. # 清空current表
  1090. session.query(table).delete()
  1091. # 重置自增主键计数器
  1092. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  1093. # 从指定数据集复制数据到current表
  1094. dataset_table_name = f"dataset_{dataset_id}"
  1095. copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
  1096. session.execute(copy_sql)
  1097. session.commit()
  1098. return jsonify({
  1099. 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
  1100. 'dataset_id': dataset_id,
  1101. 'dataset_name': dataset.Dataset_name,
  1102. 'row_count': dataset.Row_count
  1103. }), 200
  1104. except Exception as e:
  1105. session.rollback()
  1106. logger.error(f'设置current数据集失败: {str(e)}')
  1107. return jsonify({'error': str(e)}), 500
  1108. finally:
  1109. session.close()
  1110. @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
  1111. def get_model_history(data_type):
  1112. """
  1113. 获取模型训练历史数据的API接口
  1114. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1115. @return: JSON响应,包含时间序列的模型性能数据
  1116. """
  1117. Session = sessionmaker(bind=db.engine)
  1118. session = Session()
  1119. try:
  1120. # 查询所有自动生成的数据集,按时间排序
  1121. datasets = session.query(Datasets).filter(
  1122. Datasets.Dataset_type == data_type,
  1123. Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
  1124. ).order_by(Datasets.Uploaded_at).all()
  1125. history_data = []
  1126. for dataset in datasets:
  1127. # 查找对应的自动训练模型
  1128. model = session.query(Models).filter(
  1129. Models.DatasetID == dataset.Dataset_ID,
  1130. Models.Model_name.like(f'auto_trained_{data_type}_%')
  1131. ).first()
  1132. if model and model.Performance_score is not None:
  1133. # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
  1134. created_at = model.Created_at.isoformat() if model.Created_at else None
  1135. history_data.append({
  1136. 'dataset_id': dataset.Dataset_ID,
  1137. 'row_count': dataset.Row_count,
  1138. 'model_id': model.ModelID,
  1139. 'model_name': model.Model_name,
  1140. 'performance_score': float(model.Performance_score),
  1141. 'timestamp': created_at
  1142. })
  1143. # 按时间戳排序
  1144. history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
  1145. # 构建返回数据,分离各个指标序列便于前端绘图
  1146. response_data = {
  1147. 'data_type': data_type,
  1148. 'timestamps': [item['timestamp'] for item in history_data],
  1149. 'row_counts': [item['row_count'] for item in history_data],
  1150. 'performance_scores': [item['performance_score'] for item in history_data],
  1151. 'model_details': history_data # 保留完整数据供前端使用
  1152. }
  1153. return jsonify(response_data), 200
  1154. except Exception as e:
  1155. logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
  1156. return jsonify({'error': str(e)}), 500
  1157. finally:
  1158. session.close()
  1159. @bp.route('/batch-delete-datasets', methods=['POST'])
  1160. def batch_delete_datasets():
  1161. """
  1162. 批量删除数据集的API接口
  1163. @body_param dataset_ids: 要删除的数据集ID列表
  1164. @return: JSON响应
  1165. """
  1166. try:
  1167. data = request.get_json()
  1168. dataset_ids = data.get('dataset_ids', [])
  1169. if not dataset_ids:
  1170. return jsonify({'error': '未提供数据集ID列表'}), 400
  1171. results = {
  1172. 'success': [],
  1173. 'failed': [],
  1174. 'protected': [] # 被模型使用的数据集
  1175. }
  1176. for dataset_id in dataset_ids:
  1177. try:
  1178. # 调用单个删除接口
  1179. response = delete_dataset_endpoint(dataset_id)
  1180. # 解析响应
  1181. if response[1] == 200:
  1182. results['success'].append(dataset_id)
  1183. elif response[1] == 400 and 'models' in response[0].json:
  1184. # 数据集被模型保护
  1185. results['protected'].append({
  1186. 'id': dataset_id,
  1187. 'models': response[0].json['models']
  1188. })
  1189. else:
  1190. results['failed'].append({
  1191. 'id': dataset_id,
  1192. 'reason': response[0].json.get('error', '删除失败')
  1193. })
  1194. except Exception as e:
  1195. logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
  1196. results['failed'].append({
  1197. 'id': dataset_id,
  1198. 'reason': str(e)
  1199. })
  1200. # 构建响应消息
  1201. message = f"成功删除 {len(results['success'])} 个数据集"
  1202. if results['protected']:
  1203. message += f", {len(results['protected'])} 个数据集被保护"
  1204. if results['failed']:
  1205. message += f", {len(results['failed'])} 个数据集删除失败"
  1206. return jsonify({
  1207. 'message': message,
  1208. 'results': results
  1209. }), 200
  1210. except Exception as e:
  1211. logger.error(f'批量删除数据集失败: {str(e)}')
  1212. return jsonify({'error': str(e)}), 500
  1213. @bp.route('/batch-delete-models', methods=['POST'])
  1214. def batch_delete_models():
  1215. """
  1216. 批量删除模型的API接口
  1217. @body_param model_ids: 要删除的模型ID列表
  1218. @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
  1219. @return: JSON响应
  1220. """
  1221. try:
  1222. data = request.get_json()
  1223. model_ids = data.get('model_ids', [])
  1224. delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
  1225. if not model_ids:
  1226. return jsonify({'error': '未提供模型ID列表'}), 400
  1227. results = {
  1228. 'success': [],
  1229. 'failed': [],
  1230. 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
  1231. }
  1232. for model_id in model_ids:
  1233. try:
  1234. # 调用单个删除接口
  1235. response = delete_model(model_id, delete_dataset=delete_datasets)
  1236. # 解析响应
  1237. if response[1] == 200:
  1238. results['success'].append(model_id)
  1239. # 如果删除了关联数据集,记录数据集ID
  1240. if 'dataset_info' in response[0].json:
  1241. results['datasets_deleted'].append(
  1242. response[0].json['dataset_info']['dataset_id']
  1243. )
  1244. else:
  1245. results['failed'].append({
  1246. 'id': model_id,
  1247. 'reason': response[0].json.get('error', '删除失败')
  1248. })
  1249. except Exception as e:
  1250. logger.error(f'删除模型 {model_id} 失败: {str(e)}')
  1251. results['failed'].append({
  1252. 'id': model_id,
  1253. 'reason': str(e)
  1254. })
  1255. # 构建响应消息
  1256. message = f"成功删除 {len(results['success'])} 个模型"
  1257. if results['datasets_deleted']:
  1258. message += f", {len(results['datasets_deleted'])} 个关联数据集"
  1259. if results['failed']:
  1260. message += f", {len(results['failed'])} 个模型删除失败"
  1261. return jsonify({
  1262. 'message': message,
  1263. 'results': results
  1264. }), 200
  1265. except Exception as e:
  1266. logger.error(f'批量删除模型失败: {str(e)}')
  1267. return jsonify({'error': str(e)}), 500
  1268. @bp.route('/kriging_interpolation', methods=['POST'])
  1269. def kriging_interpolation():
  1270. try:
  1271. data = request.get_json()
  1272. required = ['file_name', 'emission_column', 'points']
  1273. if not all(k in data for k in required):
  1274. return jsonify({"error": "Missing parameters"}), 400
  1275. # 添加坐标顺序验证
  1276. points = data['points']
  1277. if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
  1278. return jsonify({"error": "Invalid points format"}), 400
  1279. result = create_kriging(
  1280. data['file_name'],
  1281. data['emission_column'],
  1282. data['points']
  1283. )
  1284. return jsonify(result)
  1285. except Exception as e:
  1286. return jsonify({"error": str(e)}), 500
  1287. # 显示切换模型
  1288. @bp.route('/models', methods=['GET'])
  1289. def get_models():
  1290. session = None
  1291. try:
  1292. # 创建 session
  1293. Session = sessionmaker(bind=db.engine)
  1294. session = Session()
  1295. # 查询所有模型
  1296. models = session.query(Models).all()
  1297. logger.debug(f"Models found: {models}") # 打印查询的模型数据
  1298. if not models:
  1299. return jsonify({'message': 'No models found'}), 404
  1300. # 将模型数据转换为字典列表
  1301. models_list = [
  1302. {
  1303. 'ModelID': model.ModelID,
  1304. 'ModelName': model.Model_name,
  1305. 'ModelType': model.Model_type,
  1306. 'CreatedAt': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  1307. 'Description': model.Description,
  1308. 'DatasetID': model.DatasetID,
  1309. 'ModelFilePath': model.ModelFilePath,
  1310. 'DataType': model.Data_type,
  1311. 'PerformanceScore': model.Performance_score
  1312. }
  1313. for model in models
  1314. ]
  1315. return jsonify(models_list), 200
  1316. except Exception as e:
  1317. return jsonify({'error': str(e)}), 400
  1318. finally:
  1319. if session:
  1320. session.close()
  1321. # 切换模型接口
  1322. @bp.route('/switch-model', methods=['POST'])
  1323. def switch_model():
  1324. session = None
  1325. try:
  1326. data = request.get_json()
  1327. model_id = data.get('model_id')
  1328. model_name = data.get('model_name')
  1329. # 创建 session
  1330. Session = sessionmaker(bind=db.engine)
  1331. session = Session()
  1332. # 查找模型
  1333. model = session.query(Models).filter_by(ModelID=model_id).first()
  1334. if not model:
  1335. return jsonify({'error': 'Model not found'}), 404
  1336. # 更新模型状态(或其他切换逻辑)
  1337. # 假设此处是更新模型的某些字段来进行切换
  1338. model.status = 'active' # 假设有一个字段记录模型状态
  1339. session.commit()
  1340. # 记录切换日志
  1341. logger.info(f'Model {model_name} (ID: {model_id}) switched successfully.')
  1342. return jsonify({'success': True, 'message': f'Model {model_name} switched successfully!'}), 200
  1343. except Exception as e:
  1344. logger.error('Failed to switch model:', exc_info=True)
  1345. return jsonify({'error': str(e)}), 400
  1346. finally:
  1347. if session:
  1348. session.close()
  1349. # 修改了一下登录·接口
  1350. @bp.route('/login', methods=['POST'])
  1351. def login_user():
  1352. data = request.get_json()
  1353. logger.debug(f"Received login data: {data}") # 增加调试日志
  1354. name = data.get('name')
  1355. password = data.get('password')
  1356. logger.info(f"Login request received for user: {name}")
  1357. if not isinstance(name, str) or not isinstance(password, str):
  1358. logger.warning("Username and password must be strings")
  1359. return jsonify({"success": False, "message": "用户名和密码必须为字符串"}), 400
  1360. if not name or not password:
  1361. logger.warning("Username and password cannot be empty")
  1362. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  1363. query = "SELECT id, name, password FROM users WHERE name = ?"
  1364. try:
  1365. with get_db() as conn:
  1366. user = conn.execute(query, (name,)).fetchone()
  1367. if not user:
  1368. logger.warning(f"User '{name}' does not exist")
  1369. return jsonify({"success": False, "message": "用户名不存在"}), 400
  1370. stored_password = user[2] # 假设 'password' 是第三个字段
  1371. user_id = user[0] # 假设 'id' 是第一个字段
  1372. if check_password_hash(stored_password, password):
  1373. session['name'] = name
  1374. logger.info(f"User '{name}' logged in successfully.")
  1375. return jsonify({
  1376. "success": True,
  1377. "message": "登录成功",
  1378. "userId": user_id,
  1379. "name": name
  1380. })
  1381. else:
  1382. logger.warning(f"Incorrect password for user '{name}'")
  1383. return jsonify({"success": False, "message": "用户名或密码错误"}), 400
  1384. except sqlite3.DatabaseError as db_err:
  1385. logger.error(f"Database error during login process: {db_err}", exc_info=True)
  1386. return jsonify({"success": False, "message": "数据库错误"}), 500
  1387. except Exception as e:
  1388. logger.error(f"Unexpected error during login process: {e}", exc_info=True)
  1389. return jsonify({"success": False, "message": "登录失败"}), 500
  1390. # 添加退出登录状态接口
  1391. @bp.route('/logout', methods=['GET', 'POST'])
  1392. def logout_user():
  1393. try:
  1394. session.clear()
  1395. return jsonify({"msg": "退出成功"}), 200
  1396. except Exception as e:
  1397. logger.error(f"Error during logout process: {e}", exc_info=True)
  1398. return jsonify({"msg": "退出失败"}), 500
  1399. # 获取软件介绍信息的路由
  1400. @bp.route('/software-intro/<int:id>', methods=['GET'])
  1401. def get_software_intro(id):
  1402. try:
  1403. conn = get_db_connection()
  1404. cursor = conn.cursor()
  1405. cursor.execute('SELECT title, intro FROM software_intro WHERE id = ?', (id,))
  1406. result = cursor.fetchone()
  1407. conn.close()
  1408. if result:
  1409. title, intro = result
  1410. return jsonify({
  1411. 'title': title,
  1412. 'intro': intro
  1413. })
  1414. return jsonify({}), 404
  1415. except sqlite3.Error as e:
  1416. print(f"数据库错误: {e}")
  1417. return jsonify({"error": f"数据库错误: {str(e)}"}), 500
  1418. # 更新软件介绍信息的路由
  1419. @bp.route('/software-intro/<int:id>', methods=['PUT'])
  1420. def update_software_intro(id):
  1421. try:
  1422. data = request.get_json()
  1423. title = data.get('title')
  1424. intro = data.get('intro')
  1425. conn = get_db_connection()
  1426. cursor = conn.cursor()
  1427. cursor.execute('UPDATE software_intro SET title =?, intro =? WHERE id = ?', (title, intro, id))
  1428. conn.commit()
  1429. conn.close()
  1430. return jsonify({'message': '软件介绍更新成功'})
  1431. except sqlite3.Error as e:
  1432. print(f"数据库错误: {e}")
  1433. return jsonify({"error": f"数据库错误: {str(e)}"}), 500
  1434. # 处理图片上传的路由
  1435. @bp.route('/upload-image', methods=['POST'])
  1436. def upload_image():
  1437. file = request.files['image']
  1438. if file:
  1439. filename = str(uuid.uuid4()) + '.' + file.filename.rsplit('.', 1)[1].lower()
  1440. file.save(os.path.join(os.getcwd(), 'uploads', filename))
  1441. imageUrl = f'http://127.0.0.1:5000/uploads/{filename}'
  1442. return jsonify({'imageUrl': imageUrl})
  1443. return jsonify({'error': '未找到图片文件'}), 400
  1444. # 配置静态资源服务
  1445. @bp.route('/uploads/<path:filename>')
  1446. def serve_image(filename):
  1447. uploads_folder = os.path.join(os.getcwd(), 'uploads')
  1448. return send_from_directory(uploads_folder, filename)