123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350 |
- import datetime
- import os
- import pickle
- import pandas as pd
- from flask_sqlalchemy.session import Session
- from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
- from sklearn.metrics import r2_score
- from sklearn.model_selection import train_test_split, cross_val_score
- from sqlalchemy import text
- from xgboost import XGBRegressor
- from .database_models import Models, Datasets
- from .config import Config
- # 加载模型
- def load_model(session, model_id):
- model = session.query(Models).filter(Models.ModelID == model_id).first()
-
- if not model:
- raise ValueError(f"Model with ID {model_id} not found.")
- with open(model.ModelFilePath, 'rb') as f:
- return pickle.load(f)
- # 模型预测
- def predict(session, input_data: pd.DataFrame, model_id):
- # 初始化模型
- ML_model = load_model(session, model_id) # 根据指定的模型名加载模型
- # model = load_model(model_id) # 根据指定的模型名加载模型
- predictions = ML_model.predict(input_data)
- return predictions.tolist()
- # 计算模型评分
- def calculate_model_score(model_info):
- # 加载模型
- with open(model_info.ModelFilePath, 'rb') as f:
- ML_model = pickle.load(f)
- # print("Model requires the following features:", model.feature_names_in_)
- # 数据准备
- if model_info.Data_type == 'reflux': # 反酸数据集
- # 加载保存的 X_test 和 Y_test
- X_test = pd.read_csv('uploads/data/X_test_reflux.csv')
- Y_test = pd.read_csv('uploads/data/Y_test_reflux.csv')
- print(X_test.columns) # 在测试时使用的数据的列名
- y_pred = ML_model.predict(X_test)
- elif model_info.Data_type == 'reduce': # 降酸数据集
- # 加载保存的 X_test 和 Y_test
- X_test = pd.read_csv('uploads/data/X_test_reduce.csv')
- Y_test = pd.read_csv('uploads/data/Y_test_reduce.csv')
- print(X_test.columns) # 在测试时使用的数据的列名
- y_pred = ML_model.predict(X_test)
- # 计算 R² 分数
- r2 = r2_score(Y_test, y_pred)
- return r2
- def train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id=None):
- try:
- if not dataset_id:
- # 创建新的数据集并复制数据,此过程将不立即提交
- dataset_id = save_current_dataset(session, data_type, commit=False)
- if data_type == 'reflux':
- current_table = 'current_reflux'
- elif data_type == 'reduce':
- current_table = 'current_reduce'
- # 从current数据集表中加载数据
- dataset = pd.read_sql_table(current_table, session.bind)
- elif dataset_id:
- # 从新复制的数据集表中加载数据
- dataset_table_name = f"dataset_{dataset_id}"
- dataset = pd.read_sql_table(dataset_table_name, session.bind)
- if dataset.empty:
- raise ValueError(f"Dataset {dataset_id} is empty or not found.")
- if data_type == 'reflux':
- X = dataset.iloc[:, 1:-1]
- y = dataset.iloc[:, -1]
- elif data_type == 'reduce':
- X = dataset.iloc[:, 2:]
- y = dataset.iloc[:, 1]
- # 训练模型
- model = train_model_by_type(X, y, model_type)
- # 保存模型到数据库
- model_id = save_model(session, model, model_name, model_type, model_description, dataset_id, data_type)
- # 所有操作成功后,手动提交事务
- session.commit()
- return model_name, model_id, dataset_id
- except Exception as e:
- # 如果在任何阶段出现异常,回滚事务
- session.rollback()
- raise e # 可选择重新抛出异常或处理异常
- def save_current_dataset(session, data_type, commit=True):
- """
- 创建一个新的数据集条目,并复制对应的数据类型表的数据,但不立即提交事务。
- Args:
- session (Session): SQLAlchemy session对象。
- data_type (str): 数据集的类型。
- commit (bool): 是否在函数结束时提交事务。
- Returns:
- int: 新保存的数据集的ID。
- """
- new_dataset = Datasets(
- Dataset_name=f"{data_type}_dataset_{datetime.datetime.now():%Y%m%d_%H%M%S}",
- Dataset_description=f"Automatically generated dataset for type {data_type}",
- Row_count=0,
- Status='pending',
- Dataset_type=data_type
- )
- session.add(new_dataset)
- session.flush()
- dataset_id = new_dataset.Dataset_ID
- source_table = data_type_table_mapping(data_type)
- new_table_name = f"dataset_{dataset_id}"
- session.execute(text(f"CREATE TABLE {new_table_name} AS SELECT * FROM {source_table};"))
- session.execute(text(f"UPDATE datasets SET status='Datasets upgraded success', row_count=(SELECT count(*) FROM {new_table_name}) WHERE dataset_id={dataset_id};"))
- if commit:
- session.commit()
- return dataset_id
- def data_type_table_mapping(data_type):
- """映射数据类型到对应的数据库表名"""
- if data_type == 'reduce':
- return 'current_reduce'
- elif data_type == 'reflux':
- return 'current_reflux'
- else:
- raise ValueError("Invalid data type provided.")
- def train_model_by_type(X, y, model_type):
- # 划分数据集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- if model_type == 'RandomForest':
- # 随机森林的参数优化
- return train_random_forest(X_train, y_train)
- elif model_type == 'XGBR':
- # XGBoost的参数优化
- return train_xgboost(X_train, y_train)
- elif model_type == 'GBSTR':
- # 梯度提升树的参数优化
- return train_gradient_boosting(X_train, y_train)
- else:
- raise ValueError(f"Unsupported model type: {model_type}")
- def train_random_forest(X_train, y_train):
- best_score = -float('inf')
- best_n_estimators = None
- best_max_depth = None
- random_state = 43
- # 筛选最佳的树的数量
- for n_estimators in range(1, 20, 1):
- model = RandomForestRegressor(n_estimators=n_estimators, random_state=random_state)
- score = cross_val_score(model, X_train, y_train, cv=5).mean()
- if score > best_score:
- best_score = score
- best_n_estimators = n_estimators
- print(f"Best number of trees: {best_n_estimators}, Score: {best_score}")
- # 在找到的最佳树的数量基础上,筛选最佳的最大深度
- best_score = 0 # 重置最佳得分,为最大深度优化做准备
- for max_depth in range(1, 5, 1):
- model = RandomForestRegressor(n_estimators=best_n_estimators, max_depth=max_depth, random_state=random_state)
- score = cross_val_score(model, X_train, y_train, cv=5).mean()
- if score > best_score:
- best_score = score
- best_max_depth = max_depth
- print(f"Best max depth: {best_max_depth}, Score: {best_score}")
- # 使用最佳的树的数量和最大深度训练最终模型
- best_model = RandomForestRegressor(n_estimators=best_n_estimators, max_depth=best_max_depth,
- random_state=random_state)
- # 传入列名进行训练
- best_model.fit(X_train, y_train)
- # 指定传入的特征名
- best_model.feature_names_in_ = X_train.columns
- return best_model
- def train_xgboost(X_train, y_train):
- best_score = -float('inf')
- best_params = {'learning_rate': None, 'max_depth': None}
- random_state = 43
- for learning_rate in [0.01, 0.05, 0.1, 0.2]:
- for max_depth in range(3, 10):
- model = XGBRegressor(learning_rate=learning_rate, max_depth=max_depth, random_state=random_state)
- score = cross_val_score(model, X_train, y_train, cv=5).mean()
- if score > best_score:
- best_score = score
- best_params['learning_rate'] = learning_rate
- best_params['max_depth'] = max_depth
- print(f"Best parameters: {best_params}, Score: {best_score}")
- # 使用找到的最佳参数训练最终模型
- best_model = XGBRegressor(learning_rate=best_params['learning_rate'], max_depth=best_params['max_depth'],
- random_state=random_state)
- best_model.fit(X_train, y_train)
- return best_model
- def train_gradient_boosting(X_train, y_train):
- best_score = -float('inf')
- best_params = {'learning_rate': None, 'max_depth': None}
- random_state = 43
- for learning_rate in [0.01, 0.05, 0.1, 0.2]:
- for max_depth in range(3, 10):
- model = GradientBoostingRegressor(learning_rate=learning_rate, max_depth=max_depth, random_state=random_state)
- score = cross_val_score(model, X_train, y_train, cv=5).mean()
- if score > best_score:
- best_score = score
- best_params['learning_rate'] = learning_rate
- best_params['max_depth'] = max_depth
- print(f"Best parameters: {best_params}, Score: {best_score}")
- # 使用找到的最佳参数训练最终模型
- best_model = GradientBoostingRegressor(learning_rate=best_params['learning_rate'], max_depth=best_params['max_depth'],
- random_state=random_state)
- best_model.fit(X_train, y_train)
- return best_model
- def save_model(session, model, model_name, model_type, model_description, dataset_id, data_type, commit=False):
- """
- 保存模型到数据库,并将模型文件保存到磁盘。
-
- Args:
- session: 数据库会话
- model: 要保存的模型对象
- model_name: 模型的名称
- model_type: 模型的类型
- model_description: 模型的描述信息
- dataset_id: 数据集ID
- data_type: 数据类型
- commit: 是否提交事务
-
- Returns:
- int: 返回保存的模型ID
- """
- prefix_dict = {
- 'RandomForest': 'rf_model_',
- 'XGBR': 'xgbr_model_',
- 'GBSTR': 'gbstr_model_'
- }
- prefix = prefix_dict.get(model_type, 'default_model_')
- try:
- # 从配置中获取保存路径
- model_save_path = Config.MODEL_SAVE_PATH
-
- # 确保路径存在
- os.makedirs(model_save_path, exist_ok=True)
- # 获取当前时间戳
- timestamp = datetime.datetime.now().strftime('%m%d_%H%M')
- # 拼接完整的文件名
- file_name = os.path.join(model_save_path, f'{prefix}{timestamp}.pkl')
- # 保存模型到文件
- with open(file_name, 'wb') as f:
- pickle.dump(model, f)
- print(f"模型已保存至: {file_name}")
- # 创建模型数据库记录
- new_model = Models(
- Model_name=model_name,
- Model_type=model_type,
- Description=model_description,
- DatasetID=dataset_id,
- Created_at=datetime.datetime.now(),
- ModelFilePath=file_name,
- Data_type=data_type
- )
- # 添加记录到数据库
- session.add(new_model)
- session.flush()
- return new_model.ModelID
- except Exception as e:
- print(f"保存模型时发生错误: {str(e)}")
- raise
- if __name__ == '__main__':
- # 反酸模型预测
- # 测试 predict 函数
- input_data = pd.DataFrame([{
- "organic_matter": 5.2,
- "chloride": 3.1,
- "cec": 25.6,
- "h_concentration": 0.5,
- "hn": 12.4,
- "al_concentration": 0.8,
- "free_alumina": 1.2,
- "free_iron": 0.9,
- "delta_ph": -0.2
- }])
- model_name = 'RF_filt'
- Acid_reflux_result = predict(input_data, model_name)
- print("Acid_reflux_result:", Acid_reflux_result) # 预测结果
- # 降酸模型预测
- # 测试 predict 函数
- input_data = pd.DataFrame([{
- "pH": 5.2,
- "OM": 3.1,
- "CL": 25.6,
- "H": 0.5,
- "Al": 12.4
- }])
- model_name = 'rf_model_1214_1008'
- Acid_reduce_result = predict(input_data, model_name)
- print("Acid_reduce_result:", Acid_reduce_result) # 预测结果
|