routes.py 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. import sqlite3
  2. from io import BytesIO
  3. from flask import Blueprint, request, jsonify, current_app, send_file
  4. from werkzeug.security import check_password_hash, generate_password_hash
  5. from werkzeug.utils import secure_filename
  6. from .model import predict, train_and_save_model, calculate_model_score
  7. import pandas as pd
  8. from . import db # 从 app 包导入 db 实例
  9. from sqlalchemy.engine.reflection import Inspector
  10. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  11. import os
  12. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  13. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  14. predict_to_Q, Q_to_t_ha, create_kriging
  15. from sqlalchemy.orm import sessionmaker
  16. import logging
  17. from sqlalchemy import text, select, MetaData, Table, func
  18. from .tasks import train_model_task
  19. from datetime import datetime
  20. # 配置日志
  21. logging.basicConfig(level=logging.DEBUG)
  22. logger = logging.getLogger(__name__)
  23. # 创建蓝图 (Blueprint),用于分离路由
  24. bp = Blueprint('routes', __name__)
  25. # 密码加密
  26. def hash_password(password):
  27. return generate_password_hash(password)
  28. def get_db():
  29. """ 获取数据库连接 """
  30. return sqlite3.connect(current_app.config['DATABASE'])
  31. # 添加一个新的辅助函数来检查数据集大小并触发训练
  32. def check_and_trigger_training(session, dataset_type, dataset_df):
  33. """
  34. 检查当前数据集大小是否跨越新的阈值点并触发训练
  35. Args:
  36. session: 数据库会话
  37. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  38. dataset_df: 数据集 DataFrame
  39. Returns:
  40. tuple: (是否触发训练, 任务ID)
  41. """
  42. try:
  43. # 根据数据集类型选择表
  44. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  45. # 获取当前记录数
  46. current_count = session.query(func.count()).select_from(table).scalar()
  47. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  48. new_records = len(dataset_df) # 需要从上层函数传入
  49. # 计算新增数据前的记录数
  50. previous_count = current_count - new_records
  51. # 设置阈值
  52. THRESHOLD = current_app.config['THRESHOLD']
  53. # 计算上一个阈值点(基于新增前的数据量)
  54. last_threshold = previous_count // THRESHOLD * THRESHOLD
  55. # 计算当前所在阈值点
  56. current_threshold = current_count // THRESHOLD * THRESHOLD
  57. # 检查是否跨越了新的阈值点
  58. if current_threshold > last_threshold and current_count >= THRESHOLD:
  59. # 触发异步训练任务
  60. task = train_model_task.delay(
  61. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  62. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  63. model_description=f'Auto trained model at {current_threshold} records threshold',
  64. data_type=dataset_type
  65. )
  66. return True, task.id
  67. return False, None
  68. except Exception as e:
  69. logging.error(f"检查并触发训练失败: {str(e)}")
  70. return False, None
  71. @bp.route('/upload-dataset', methods=['POST'])
  72. def upload_dataset():
  73. # 创建 session
  74. Session = sessionmaker(bind=db.engine)
  75. session = Session()
  76. try:
  77. if 'file' not in request.files:
  78. return jsonify({'error': 'No file part'}), 400
  79. file = request.files['file']
  80. if file.filename == '' or not allowed_file(file.filename):
  81. return jsonify({'error': 'No selected file or invalid file type'}), 400
  82. dataset_name = request.form.get('dataset_name')
  83. dataset_description = request.form.get('dataset_description', 'No description provided')
  84. dataset_type = request.form.get('dataset_type')
  85. if not dataset_type:
  86. return jsonify({'error': 'Dataset type is required'}), 400
  87. new_dataset = Datasets(
  88. Dataset_name=dataset_name,
  89. Dataset_description=dataset_description,
  90. Row_count=0,
  91. Status='Datasets_upgraded',
  92. Dataset_type=dataset_type,
  93. Uploaded_at=datetime.now()
  94. )
  95. session.add(new_dataset)
  96. session.commit()
  97. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  98. upload_folder = current_app.config['UPLOAD_FOLDER']
  99. file_path = os.path.join(upload_folder, unique_filename)
  100. file.save(file_path)
  101. dataset_df = pd.read_excel(file_path)
  102. new_dataset.Row_count = len(dataset_df)
  103. new_dataset.Status = 'excel_file_saved success'
  104. session.commit()
  105. # 处理列名
  106. dataset_df = clean_column_names(dataset_df)
  107. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  108. column_types = infer_column_types(dataset_df)
  109. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  110. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  111. # 根据 dataset_type 决定插入到哪个已有表
  112. if dataset_type == 'reduce':
  113. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  114. elif dataset_type == 'reflux':
  115. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  116. session.commit()
  117. # 在完成数据插入后,检查是否需要触发训练
  118. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  119. response_data = {
  120. 'message': f'Dataset {dataset_name} uploaded successfully!',
  121. 'dataset_id': new_dataset.Dataset_ID,
  122. 'filename': unique_filename,
  123. 'training_triggered': training_triggered
  124. }
  125. if training_triggered:
  126. response_data['task_id'] = task_id
  127. response_data['message'] += ' Auto-training has been triggered.'
  128. return jsonify(response_data), 201
  129. except Exception as e:
  130. session.rollback()
  131. logging.error('Failed to process the dataset upload:', exc_info=True)
  132. return jsonify({'error': str(e)}), 500
  133. finally:
  134. # 确保 session 总是被关闭
  135. if session:
  136. session.close()
  137. @bp.route('/train-and-save-model', methods=['POST'])
  138. def train_and_save_model_endpoint():
  139. # 创建 sessionmaker 实例
  140. Session = sessionmaker(bind=db.engine)
  141. session = Session()
  142. data = request.get_json()
  143. # 从请求中解析参数
  144. model_type = data.get('model_type')
  145. model_name = data.get('model_name')
  146. model_description = data.get('model_description')
  147. data_type = data.get('data_type')
  148. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  149. try:
  150. # 调用训练和保存模型的函数
  151. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  152. model_id = result[1] if result else None
  153. # 计算模型评分
  154. if model_id:
  155. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  156. if model_info:
  157. score = calculate_model_score(model_info)
  158. # 更新模型评分
  159. model_info.Performance_score = score
  160. session.commit()
  161. result = {'model_id': model_id, 'model_score': score}
  162. # 返回成功响应
  163. return jsonify({
  164. 'message': 'Model trained and saved successfully',
  165. 'result': result
  166. }), 200
  167. except Exception as e:
  168. session.rollback()
  169. logging.error('Failed to process the model training:', exc_info=True)
  170. return jsonify({
  171. 'error': 'Failed to train and save model',
  172. 'message': str(e)
  173. }), 500
  174. finally:
  175. session.close()
  176. @bp.route('/predict', methods=['POST'])
  177. def predict_route():
  178. # 创建 sessionmaker 实例
  179. Session = sessionmaker(bind=db.engine)
  180. session = Session()
  181. try:
  182. data = request.get_json()
  183. model_id = data.get('model_id') # 提取模型名称
  184. parameters = data.get('parameters', {}) # 提取所有变量
  185. # 根据model_id获取模型Data_type
  186. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  187. if not model_info:
  188. return jsonify({'error': 'Model not found'}), 404
  189. data_type = model_info.Data_type
  190. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  191. # 如果为reduce,则不需要传入target_ph
  192. if data_type == 'reduce':
  193. # 获取传入的init_ph、target_ph参数
  194. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  195. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  196. # 从输入数据中删除'target_pH'列
  197. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  198. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  199. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  200. if data_type == 'reduce':
  201. predictions = predictions[0]
  202. # 将预测结果转换为Q
  203. Q = predict_to_Q(predictions, init_ph, target_ph)
  204. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  205. print(predictions)
  206. return jsonify({'result': predictions}), 200
  207. except Exception as e:
  208. logging.error('Failed to predict:', exc_info=True)
  209. return jsonify({'error': str(e)}), 400
  210. # 为指定模型计算评分Performance_score,需要提供model_id
  211. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  212. def score_model(model_id):
  213. # 创建 sessionmaker 实例
  214. Session = sessionmaker(bind=db.engine)
  215. session = Session()
  216. try:
  217. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  218. if not model_info:
  219. return jsonify({'error': 'Model not found'}), 404
  220. # 计算模型评分
  221. score = calculate_model_score(model_info)
  222. # 更新模型记录中的评分
  223. model_info.Performance_score = score
  224. session.commit()
  225. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  226. except Exception as e:
  227. logging.error('Failed to process the dataset upload:', exc_info=True)
  228. return jsonify({'error': str(e)}), 400
  229. finally:
  230. session.close()
  231. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  232. def delete_dataset_endpoint(dataset_id):
  233. """
  234. 删除数据集的API接口
  235. @param dataset_id: 要删除的数据集ID
  236. @return: JSON响应
  237. """
  238. # 创建 sessionmaker 实例
  239. Session = sessionmaker(bind=db.engine)
  240. session = Session()
  241. try:
  242. # 查询数据集
  243. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  244. if not dataset:
  245. return jsonify({'error': '未找到数据集'}), 404
  246. # 检查是否有模型使用了该数据集
  247. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  248. if models_using_dataset:
  249. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  250. return jsonify({
  251. 'error': '无法删除数据集,因为以下模型正在使用它',
  252. 'models': models_info
  253. }), 400
  254. # 删除Excel文件
  255. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  256. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  257. if os.path.exists(file_path):
  258. try:
  259. os.remove(file_path)
  260. except OSError as e:
  261. logger.error(f'删除文件失败: {str(e)}')
  262. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  263. # 删除数据表
  264. table_name = f"dataset_{dataset.Dataset_ID}"
  265. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  266. # 删除数据集记录
  267. session.delete(dataset)
  268. session.commit()
  269. return jsonify({
  270. 'message': '数据集删除成功',
  271. 'deleted_files': [filename]
  272. }), 200
  273. except Exception as e:
  274. session.rollback()
  275. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  276. return jsonify({'error': str(e)}), 500
  277. finally:
  278. session.close()
  279. @bp.route('/tables', methods=['GET'])
  280. def list_tables():
  281. engine = db.engine # 使用 db 实例的 engine
  282. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  283. table_names = inspector.get_table_names() # 获取所有表名
  284. return jsonify(table_names) # 以 JSON 形式返回表名列表
  285. @bp.route('/models/<int:model_id>', methods=['GET'])
  286. def get_model(model_id):
  287. """
  288. 获取单个模型信息的API接口
  289. @param model_id: 模型ID
  290. @return: JSON响应
  291. """
  292. Session = sessionmaker(bind=db.engine)
  293. session = Session()
  294. try:
  295. model = session.query(Models).filter_by(ModelID=model_id).first()
  296. if model:
  297. return jsonify({
  298. 'ModelID': model.ModelID,
  299. 'Model_name': model.Model_name,
  300. 'Model_type': model.Model_type,
  301. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  302. 'Description': model.Description,
  303. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  304. 'Data_type': model.Data_type
  305. })
  306. else:
  307. return jsonify({'message': '未找到模型'}), 404
  308. except Exception as e:
  309. logger.error(f'获取模型信息失败: {str(e)}')
  310. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  311. finally:
  312. session.close()
  313. @bp.route('/models', methods=['GET'])
  314. def get_all_models():
  315. """
  316. 获取所有模型信息的API接口
  317. @return: JSON响应
  318. """
  319. Session = sessionmaker(bind=db.engine)
  320. session = Session()
  321. try:
  322. models = session.query(Models).all()
  323. if models:
  324. result = [
  325. {
  326. 'ModelID': model.ModelID,
  327. 'Model_name': model.Model_name,
  328. 'Model_type': model.Model_type,
  329. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  330. 'Description': model.Description,
  331. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  332. 'Data_type': model.Data_type
  333. }
  334. for model in models
  335. ]
  336. return jsonify(result)
  337. else:
  338. return jsonify({'message': '未找到任何模型'}), 404
  339. except Exception as e:
  340. logger.error(f'获取所有模型信息失败: {str(e)}')
  341. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  342. finally:
  343. session.close()
  344. @bp.route('/model-parameters', methods=['GET'])
  345. def get_all_model_parameters():
  346. """
  347. 获取所有模型参数的API接口
  348. @return: JSON响应
  349. """
  350. Session = sessionmaker(bind=db.engine)
  351. session = Session()
  352. try:
  353. parameters = session.query(ModelParameters).all()
  354. if parameters:
  355. result = [
  356. {
  357. 'ParamID': param.ParamID,
  358. 'ModelID': param.ModelID,
  359. 'ParamName': param.ParamName,
  360. 'ParamValue': param.ParamValue
  361. }
  362. for param in parameters
  363. ]
  364. return jsonify(result)
  365. else:
  366. return jsonify({'message': '未找到任何参数'}), 404
  367. except Exception as e:
  368. logger.error(f'获取所有模型参数失败: {str(e)}')
  369. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  370. finally:
  371. session.close()
  372. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  373. def get_model_parameters(model_id):
  374. try:
  375. model = Models.query.filter_by(ModelID=model_id).first()
  376. if model:
  377. # 获取该模型的所有参数
  378. parameters = [
  379. {
  380. 'ParamID': param.ParamID,
  381. 'ParamName': param.ParamName,
  382. 'ParamValue': param.ParamValue
  383. }
  384. for param in model.parameters
  385. ]
  386. # 返回模型参数信息
  387. return jsonify({
  388. 'ModelID': model.ModelID,
  389. 'ModelName': model.ModelName,
  390. 'ModelType': model.ModelType,
  391. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  392. 'Description': model.Description,
  393. 'Parameters': parameters
  394. })
  395. else:
  396. return jsonify({'message': 'Model not found'}), 404
  397. except Exception as e:
  398. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  399. # 定义添加数据库记录的 API 接口
  400. @bp.route('/add_item', methods=['POST'])
  401. def add_item():
  402. """
  403. 接收 JSON 格式的请求体,包含表名和要插入的数据。
  404. 尝试将数据插入到指定的表中,并进行字段查重。
  405. :return:
  406. """
  407. try:
  408. # 确保请求体是 JSON 格式
  409. data = request.get_json()
  410. if not data:
  411. raise ValueError("No JSON data provided")
  412. table_name = data.get('table')
  413. item_data = data.get('item')
  414. if not table_name or not item_data:
  415. return jsonify({'error': 'Missing table name or item data'}), 400
  416. # 定义各个表的字段查重规则
  417. duplicate_check_rules = {
  418. 'users': ['email', 'username'],
  419. 'products': ['product_code'],
  420. 'current_reduce': [ 'Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
  421. 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
  422. # 其他表和规则
  423. }
  424. # 获取该表的查重字段
  425. duplicate_columns = duplicate_check_rules.get(table_name)
  426. if not duplicate_columns:
  427. return jsonify({'error': 'No duplicate check rule for this table'}), 400
  428. # 动态构建查询条件,逐一检查是否有重复数据
  429. condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
  430. duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
  431. result = db.session.execute(text(duplicate_query), item_data).fetchone()
  432. if result:
  433. return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
  434. # 动态构建 SQL 语句,进行插入操作
  435. columns = ', '.join(item_data.keys())
  436. placeholders = ', '.join([f":{key}" for key in item_data.keys()])
  437. sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
  438. # 直接执行插入操作,无需显式的事务管理
  439. db.session.execute(text(sql), item_data)
  440. # 提交事务
  441. db.session.commit()
  442. # 返回成功响应
  443. return jsonify({'success': True, 'message': 'Item added successfully'}), 201
  444. except ValueError as e:
  445. return jsonify({'error': str(e)}), 400
  446. except KeyError as e:
  447. return jsonify({'error': f'Missing data field: {e}'}), 400
  448. except sqlite3.IntegrityError as e:
  449. return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
  450. except sqlite3.Error as e:
  451. return jsonify({'error': '数据库错误', 'details': str(e)}), 500
  452. @bp.route('/delete_item', methods=['POST'])
  453. def delete_item():
  454. """
  455. 删除数据库记录的 API 接口
  456. """
  457. data = request.get_json()
  458. table_name = data.get('table')
  459. condition = data.get('condition')
  460. # 检查表名和条件是否提供
  461. if not table_name or not condition:
  462. return jsonify({
  463. "success": False,
  464. "message": "缺少表名或条件参数"
  465. }), 400
  466. # 尝试从条件字符串中解析键和值
  467. try:
  468. key, value = condition.split('=')
  469. key = key.strip() # 去除多余的空格
  470. value = value.strip().strip("'\"") # 去除多余的空格和引号
  471. except ValueError:
  472. return jsonify({
  473. "success": False,
  474. "message": "条件格式错误,应为 'key=value'"
  475. }), 400
  476. # 准备 SQL 删除语句
  477. sql = f"DELETE FROM {table_name} WHERE {key} = :value"
  478. try:
  479. # 使用 SQLAlchemy 执行删除
  480. with db.session.begin():
  481. result = db.session.execute(text(sql), {"value": value})
  482. # 检查是否有记录被删除
  483. if result.rowcount == 0:
  484. return jsonify({
  485. "success": False,
  486. "message": "未找到符合条件的记录"
  487. }), 404
  488. return jsonify({
  489. "success": True,
  490. "message": "记录删除成功"
  491. }), 200
  492. except Exception as e:
  493. return jsonify({
  494. "success": False,
  495. "message": f"删除失败: {e}"
  496. }), 500
  497. # 定义修改数据库记录的 API 接口
  498. @bp.route('/update_item', methods=['PUT'])
  499. def update_record():
  500. """
  501. 接收 JSON 格式的请求体,包含表名和更新的数据。
  502. 尝试更新指定的记录。
  503. """
  504. data = request.get_json()
  505. # 检查必要的数据是否提供
  506. if not data or 'table' not in data or 'item' not in data:
  507. return jsonify({
  508. "success": False,
  509. "message": "请求数据不完整"
  510. }), 400
  511. table_name = data['table']
  512. item = data['item']
  513. # 假设 item 的第一个键是 ID
  514. id_key = next(iter(item.keys())) # 获取第一个键
  515. record_id = item.get(id_key)
  516. if not record_id:
  517. return jsonify({
  518. "success": False,
  519. "message": "缺少记录 ID"
  520. }), 400
  521. # 获取更新的字段和值
  522. updates = {key: value for key, value in item.items() if key != id_key}
  523. if not updates:
  524. return jsonify({
  525. "success": False,
  526. "message": "没有提供需要更新的字段"
  527. }), 400
  528. # 动态构建 SQL
  529. set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
  530. sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
  531. # 添加 ID 到参数
  532. updates['id_value'] = record_id
  533. try:
  534. # 使用 SQLAlchemy 执行更新
  535. with db.session.begin():
  536. result = db.session.execute(text(sql), updates)
  537. # 检查是否有更新的记录
  538. if result.rowcount == 0:
  539. return jsonify({
  540. "success": False,
  541. "message": "未找到要更新的记录"
  542. }), 404
  543. return jsonify({
  544. "success": True,
  545. "message": "数据更新成功"
  546. }), 200
  547. except Exception as e:
  548. # 捕获所有异常并返回
  549. return jsonify({
  550. "success": False,
  551. "message": f"更新失败: {str(e)}"
  552. }), 500
  553. # 定义查询数据库记录的 API 接口
  554. @bp.route('/search/record', methods=['GET'])
  555. def sql_search():
  556. """
  557. 接收 JSON 格式的请求体,包含表名和要查询的 ID。
  558. 尝试查询指定 ID 的记录并返回结果。
  559. :return:
  560. """
  561. try:
  562. data = request.get_json()
  563. # 表名
  564. sql_table = data['table']
  565. # 要搜索的 ID
  566. Id = data['id']
  567. # 连接到数据库
  568. cur = db.cursor()
  569. # 构造查询语句
  570. sql = f"SELECT * FROM {sql_table} WHERE id = ?"
  571. # 执行查询
  572. cur.execute(sql, (Id,))
  573. # 获取查询结果
  574. rows = cur.fetchall()
  575. column_names = [desc[0] for desc in cur.description]
  576. # 检查是否有结果
  577. if not rows:
  578. return jsonify({'error': '未查找到对应数据。'}), 400
  579. # 构造响应数据
  580. results = []
  581. for row in rows:
  582. result = {column_names[i]: row[i] for i in range(len(row))}
  583. results.append(result)
  584. # 关闭游标和数据库连接
  585. cur.close()
  586. db.close()
  587. # 返回 JSON 响应
  588. return jsonify(results), 200
  589. except sqlite3.Error as e:
  590. # 如果发生数据库错误,返回错误信息
  591. return jsonify({'error': str(e)}), 400
  592. except KeyError as e:
  593. # 如果请求数据中缺少必要的键,返回错误信息
  594. return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
  595. # 定义提供数据库列表,用于展示表格的 API 接口
  596. @bp.route('/table', methods=['POST'])
  597. def get_table():
  598. data = request.get_json()
  599. table_name = data.get('table')
  600. if not table_name:
  601. return jsonify({'error': '需要表名'}), 400
  602. try:
  603. # 创建 sessionmaker 实例
  604. Session = sessionmaker(bind=db.engine)
  605. session = Session()
  606. # 动态获取表的元数据
  607. metadata = MetaData()
  608. table = Table(table_name, metadata, autoload_with=db.engine)
  609. # 从数据库中查询所有记录
  610. query = select(table)
  611. result = session.execute(query).fetchall()
  612. # 将结果转换为列表字典形式
  613. rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
  614. # 获取列名
  615. headers = [column.name for column in table.columns]
  616. return jsonify(rows=rows, headers=headers), 200
  617. except Exception as e:
  618. return jsonify({'error': str(e)}), 400
  619. finally:
  620. # 关闭 session
  621. session.close()
  622. @bp.route('/train-model-async', methods=['POST'])
  623. def train_model_async():
  624. """
  625. 异步训练模型的API接口
  626. """
  627. try:
  628. data = request.get_json()
  629. # 从请求中获取参数
  630. model_type = data.get('model_type')
  631. model_name = data.get('model_name')
  632. model_description = data.get('model_description')
  633. data_type = data.get('data_type')
  634. dataset_id = data.get('dataset_id', None)
  635. # 验证必要参数
  636. if not all([model_type, model_name, data_type]):
  637. return jsonify({
  638. 'error': 'Missing required parameters'
  639. }), 400
  640. # 如果提供了dataset_id,验证数据集是否存在
  641. if dataset_id:
  642. Session = sessionmaker(bind=db.engine)
  643. session = Session()
  644. try:
  645. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  646. if not dataset:
  647. return jsonify({
  648. 'error': f'Dataset with ID {dataset_id} not found'
  649. }), 404
  650. finally:
  651. session.close()
  652. # 启动异步任务
  653. task = train_model_task.delay(
  654. model_type=model_type,
  655. model_name=model_name,
  656. model_description=model_description,
  657. data_type=data_type,
  658. dataset_id=dataset_id
  659. )
  660. # 返回任务ID
  661. return jsonify({
  662. 'task_id': task.id,
  663. 'message': 'Model training started'
  664. }), 202
  665. except Exception as e:
  666. logging.error('Failed to start async training task:', exc_info=True)
  667. return jsonify({
  668. 'error': str(e)
  669. }), 500
  670. @bp.route('/task-status/<task_id>', methods=['GET'])
  671. def get_task_status(task_id):
  672. """
  673. 获取异步任务状态的API接口
  674. """
  675. try:
  676. task = train_model_task.AsyncResult(task_id)
  677. if task.state == 'PENDING':
  678. response = {
  679. 'state': task.state,
  680. 'status': 'Task is waiting for execution'
  681. }
  682. elif task.state == 'FAILURE':
  683. response = {
  684. 'state': task.state,
  685. 'status': 'Task failed',
  686. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  687. }
  688. elif task.state == 'SUCCESS':
  689. response = {
  690. 'state': task.state,
  691. 'status': 'Task completed successfully',
  692. 'result': task.get()
  693. }
  694. else:
  695. response = {
  696. 'state': task.state,
  697. 'status': 'Task is in progress'
  698. }
  699. return jsonify(response), 200
  700. except Exception as e:
  701. return jsonify({
  702. 'error': str(e)
  703. }), 500
  704. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  705. def delete_model_route(model_id):
  706. # 将URL参数转换为布尔值
  707. delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
  708. # 调用原始函数
  709. return delete_model(model_id, delete_dataset=delete_dataset_param)
  710. def delete_model(model_id, delete_dataset=False):
  711. """
  712. 删除指定模型的API接口
  713. @param model_id: 要删除的模型ID
  714. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  715. @return: JSON响应
  716. """
  717. Session = sessionmaker(bind=db.engine)
  718. session = Session()
  719. try:
  720. # 查询模型信息
  721. model = session.query(Models).filter_by(ModelID=model_id).first()
  722. if not model:
  723. return jsonify({'error': '未找到指定模型'}), 404
  724. dataset_id = model.DatasetID
  725. # 1. 先删除模型记录
  726. session.delete(model)
  727. session.commit()
  728. # 2. 删除模型文件
  729. model_file = f"rf_model_{model_id}.pkl"
  730. model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
  731. if os.path.exists(model_path):
  732. try:
  733. os.remove(model_path)
  734. except OSError as e:
  735. # 如果删除文件失败,回滚数据库操作
  736. session.rollback()
  737. logger.error(f'删除模型文件失败: {str(e)}')
  738. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  739. # 3. 如果需要删除关联的数据集
  740. if delete_dataset and dataset_id:
  741. try:
  742. dataset_response = delete_dataset_endpoint(dataset_id)
  743. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  744. # 如果删除数据集失败,回滚之前的操作
  745. session.rollback()
  746. return jsonify({
  747. 'error': '删除关联数据集失败',
  748. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  749. }), 500
  750. except Exception as e:
  751. session.rollback()
  752. logger.error(f'删除关联数据集失败: {str(e)}')
  753. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  754. response_data = {
  755. 'message': '模型删除成功',
  756. 'deleted_files': [model_file]
  757. }
  758. if delete_dataset:
  759. response_data['dataset_info'] = {
  760. 'dataset_id': dataset_id,
  761. 'message': '关联数据集已删除'
  762. }
  763. return jsonify(response_data), 200
  764. except Exception as e:
  765. session.rollback()
  766. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  767. return jsonify({'error': str(e)}), 500
  768. finally:
  769. session.close()
  770. # 添加一个新的API端点来清空指定数据集
  771. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  772. def clear_dataset(data_type):
  773. """
  774. 清空指定类型的数据集并递增计数
  775. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  776. @return: JSON响应
  777. """
  778. # 创建 sessionmaker 实例
  779. Session = sessionmaker(bind=db.engine)
  780. session = Session()
  781. try:
  782. # 根据数据集类型选择表
  783. if data_type == 'reduce':
  784. table = CurrentReduce
  785. table_name = 'current_reduce'
  786. elif data_type == 'reflux':
  787. table = CurrentReflux
  788. table_name = 'current_reflux'
  789. else:
  790. return jsonify({'error': '无效的数据集类型'}), 400
  791. # 清空表内容
  792. session.query(table).delete()
  793. # 重置自增主键计数器
  794. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  795. session.commit()
  796. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  797. except Exception as e:
  798. session.rollback()
  799. return jsonify({'error': str(e)}), 500
  800. finally:
  801. session.close()
  802. @bp.route('/login', methods=['POST'])
  803. def login_user():
  804. # 获取前端传来的数据
  805. data = request.get_json()
  806. name = data.get('name') # 用户名
  807. password = data.get('password') # 密码
  808. logger.info(f"Login request received: name={name}")
  809. # 检查用户名和密码是否为空
  810. if not name or not password:
  811. logger.warning("用户名和密码不能为空")
  812. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  813. try:
  814. # 查询数据库验证用户名
  815. query = "SELECT * FROM users WHERE name = :name"
  816. conn = get_db()
  817. user = conn.execute(query, {"name": name}).fetchone()
  818. if not user:
  819. logger.warning(f"用户名 '{name}' 不存在")
  820. return jsonify({"success": False, "message": "用户名不存在"}), 400
  821. # 获取数据库中存储的密码(假设密码是哈希存储的)
  822. stored_password = user[2] # 假设密码存储在数据库的第三列
  823. user_id = user[0] # 假设 id 存储在数据库的第一列
  824. # 校验密码是否正确
  825. if check_password_hash(stored_password, password):
  826. logger.info(f"User '{name}' logged in successfully.")
  827. return jsonify({
  828. "success": True,
  829. "message": "登录成功",
  830. "userId": user_id # 返回用户 ID
  831. })
  832. else:
  833. logger.warning(f"Invalid password for user '{name}'")
  834. return jsonify({"success": False, "message": "用户名或密码错误"}), 400
  835. except Exception as e:
  836. # 记录错误日志并返回错误信息
  837. logger.error(f"Error during login: {e}", exc_info=True)
  838. return jsonify({"success": False, "message": "登录失败"}), 500
  839. # 更新用户信息接口
  840. @bp.route('/update_user', methods=['POST'])
  841. def update_user():
  842. # 获取前端传来的数据
  843. data = request.get_json()
  844. # 打印收到的请求数据
  845. current_app.logger.info(f"Received data: {data}")
  846. user_id = data.get('userId') # 用户ID
  847. name = data.get('name') # 用户名
  848. old_password = data.get('oldPassword') # 旧密码
  849. new_password = data.get('newPassword') # 新密码
  850. logger.info(f"Update request received: user_id={user_id}, name={name}")
  851. # 校验传入的用户名和密码是否为空
  852. if not name or not old_password:
  853. logger.warning("用户名和旧密码不能为空")
  854. return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
  855. # 新密码和旧密码不能相同
  856. if new_password and old_password == new_password:
  857. logger.warning(f"新密码与旧密码相同:{name}")
  858. return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
  859. try:
  860. # 查询数据库验证用户ID
  861. query = "SELECT * FROM users WHERE id = :user_id"
  862. conn = get_db()
  863. user = conn.execute(query, {"user_id": user_id}).fetchone()
  864. if not user:
  865. logger.warning(f"用户ID '{user_id}' 不存在")
  866. return jsonify({"success": False, "message": "用户不存在"}), 400
  867. # 获取数据库中存储的密码(假设密码是哈希存储的)
  868. stored_password = user[2] # 假设密码存储在数据库的第三列
  869. # 校验旧密码是否正确
  870. if not check_password_hash(stored_password, old_password):
  871. logger.warning(f"旧密码错误:{name}")
  872. return jsonify({"success": False, "message": "旧密码错误"}), 400
  873. # 如果新密码非空,则更新新密码
  874. if new_password:
  875. hashed_new_password = hash_password(new_password)
  876. update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
  877. conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
  878. conn.commit()
  879. logger.info(f"User ID '{user_id}' password updated successfully.")
  880. # 如果用户名发生更改,则更新用户名
  881. if name != user[1]:
  882. update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
  883. conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
  884. conn.commit()
  885. logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
  886. return jsonify({"success": True, "message": "用户信息更新成功"})
  887. except Exception as e:
  888. # 记录错误日志并返回错误信息
  889. logger.error(f"Error updating user: {e}", exc_info=True)
  890. return jsonify({"success": False, "message": "更新失败"}), 500
  891. # 注册用户
  892. @bp.route('/register', methods=['POST'])
  893. def register_user():
  894. # 获取前端传来的数据
  895. data = request.get_json()
  896. name = data.get('name') # 用户名
  897. password = data.get('password') # 密码
  898. logger.info(f"Register request received: name={name}")
  899. # 检查用户名和密码是否为空
  900. if not name or not password:
  901. logger.warning("用户名和密码不能为空")
  902. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  903. # 动态获取数据库表的列名
  904. columns = get_column_names('users')
  905. logger.info(f"Database columns for 'users' table: {columns}")
  906. # 检查前端传来的数据是否包含数据库表中所有的必填字段
  907. for column in ['name', 'password']:
  908. if column not in columns:
  909. logger.error(f"缺少必填字段:{column}")
  910. return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
  911. # 对密码进行哈希处理
  912. hashed_password = hash_password(password)
  913. logger.info(f"Password hashed for user: {name}")
  914. # 插入到数据库
  915. try:
  916. # 检查用户是否已经存在
  917. query = "SELECT * FROM users WHERE name = :name"
  918. conn = get_db()
  919. user = conn.execute(query, {"name": name}).fetchone()
  920. if user:
  921. logger.warning(f"用户名 '{name}' 已存在")
  922. return jsonify({"success": False, "message": "用户名已存在"}), 400
  923. # 向数据库插入数据
  924. query = "INSERT INTO users (name, password) VALUES (:name, :password)"
  925. conn.execute(query, {"name": name, "password": hashed_password})
  926. conn.commit()
  927. logger.info(f"User '{name}' registered successfully.")
  928. return jsonify({"success": True, "message": "注册成功"})
  929. except Exception as e:
  930. # 记录错误日志并返回错误信息
  931. logger.error(f"Error registering user: {e}", exc_info=True)
  932. return jsonify({"success": False, "message": "注册失败"}), 500
  933. def get_column_names(table_name):
  934. """
  935. 动态获取数据库表的列名。
  936. """
  937. try:
  938. conn = get_db()
  939. query = f"PRAGMA table_info({table_name});"
  940. result = conn.execute(query).fetchall()
  941. conn.close()
  942. return [row[1] for row in result] # 第二列是列名
  943. except Exception as e:
  944. logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
  945. return []
  946. # 导出数据
  947. @bp.route('/export_data', methods=['GET'])
  948. def export_data():
  949. table_name = request.args.get('table')
  950. file_format = request.args.get('format', 'excel').lower()
  951. if not table_name:
  952. return jsonify({'error': '缺少表名参数'}), 400
  953. if not table_name.isidentifier():
  954. return jsonify({'error': '无效的表名'}), 400
  955. try:
  956. conn = get_db()
  957. query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
  958. table_exists = conn.execute(query, (table_name,)).fetchone()
  959. if not table_exists:
  960. return jsonify({'error': f"表 {table_name} 不存在"}), 404
  961. query = f"SELECT * FROM {table_name};"
  962. df = pd.read_sql(query, conn)
  963. output = BytesIO()
  964. if file_format == 'csv':
  965. df.to_csv(output, index=False, encoding='utf-8')
  966. output.seek(0)
  967. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
  968. elif file_format == 'excel':
  969. df.to_excel(output, index=False, engine='openpyxl')
  970. output.seek(0)
  971. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
  972. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  973. else:
  974. return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
  975. except Exception as e:
  976. logger.error(f"Error in export_data: {e}", exc_info=True)
  977. return jsonify({'error': str(e)}), 500
  978. # 导入数据接口
  979. @bp.route('/import_data', methods=['POST'])
  980. def import_data():
  981. logger.debug("Import data endpoint accessed.")
  982. if 'file' not in request.files:
  983. logger.error("No file in request.")
  984. return jsonify({'success': False, 'message': '文件缺失'}), 400
  985. file = request.files['file']
  986. table_name = request.form.get('table')
  987. if not table_name:
  988. logger.error("Missing table name parameter.")
  989. return jsonify({'success': False, 'message': '缺少表名参数'}), 400
  990. if file.filename == '':
  991. logger.error("No file selected.")
  992. return jsonify({'success': False, 'message': '未选择文件'}), 400
  993. try:
  994. # 保存文件到临时路径
  995. temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
  996. file.save(temp_path)
  997. logger.debug(f"File saved to temporary path: {temp_path}")
  998. # 根据文件类型读取文件
  999. if file.filename.endswith('.xlsx'):
  1000. df = pd.read_excel(temp_path)
  1001. elif file.filename.endswith('.csv'):
  1002. df = pd.read_csv(temp_path)
  1003. else:
  1004. logger.error("Unsupported file format.")
  1005. return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
  1006. # 获取数据库列名
  1007. db_columns = get_column_names(table_name)
  1008. if 'id' in db_columns:
  1009. db_columns.remove('id') # 假设 id 列是自增的,不需要处理
  1010. if not set(db_columns).issubset(set(df.columns)):
  1011. logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
  1012. return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
  1013. # 清洗数据并删除空值行
  1014. df_cleaned = df[db_columns].dropna()
  1015. # 统一数据类型,避免 int 和 float 合并问题
  1016. df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
  1017. # 获取现有的数据
  1018. conn = get_db()
  1019. with conn:
  1020. existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
  1021. # 查找重复数据
  1022. duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
  1023. # 如果有重复数据,删除它们
  1024. df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
  1025. logger.warning(f"Duplicate data detected and removed: {duplicates}")
  1026. # 获取导入前后的数据量
  1027. total_data = len(df_cleaned) + len(duplicates)
  1028. new_data = len(df_cleaned)
  1029. duplicate_data = len(duplicates)
  1030. # 导入不重复的数据
  1031. df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
  1032. logger.debug(f"Imported {new_data} new records into the database.")
  1033. # 删除临时文件
  1034. os.remove(temp_path)
  1035. logger.debug(f"Temporary file removed: {temp_path}")
  1036. # 返回结果
  1037. return jsonify({
  1038. 'success': True,
  1039. 'message': '数据导入成功',
  1040. 'total_data': total_data,
  1041. 'new_data': new_data,
  1042. 'duplicate_data': duplicate_data
  1043. }), 200
  1044. except Exception as e:
  1045. logger.error(f"Import failed: {e}", exc_info=True)
  1046. return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
  1047. # 模板下载接口
  1048. @bp.route('/download_template', methods=['GET'])
  1049. def download_template():
  1050. """
  1051. 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
  1052. """
  1053. table_name = request.args.get('table')
  1054. if not table_name:
  1055. return jsonify({'error': '表名参数缺失'}), 400
  1056. columns = get_column_names(table_name)
  1057. if not columns:
  1058. return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
  1059. # 不包括 ID 列
  1060. if 'id' in columns:
  1061. columns.remove('id')
  1062. df = pd.DataFrame(columns=columns)
  1063. file_format = request.args.get('format', 'excel').lower()
  1064. try:
  1065. if file_format == 'csv':
  1066. output = BytesIO()
  1067. df.to_csv(output, index=False, encoding='utf-8')
  1068. output.seek(0)
  1069. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
  1070. mimetype='text/csv')
  1071. else:
  1072. output = BytesIO()
  1073. df.to_excel(output, index=False, engine='openpyxl')
  1074. output.seek(0)
  1075. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
  1076. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  1077. except Exception as e:
  1078. logger.error(f"Failed to generate template: {e}", exc_info=True)
  1079. return jsonify({'error': '生成模板文件失败'}), 500
  1080. @bp.route('/update-threshold', methods=['POST'])
  1081. def update_threshold():
  1082. """
  1083. 更新训练阈值的API接口
  1084. @body_param threshold: 新的阈值值(整数)
  1085. @return: JSON响应
  1086. """
  1087. try:
  1088. data = request.get_json()
  1089. new_threshold = data.get('threshold')
  1090. # 验证新阈值
  1091. if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
  1092. return jsonify({
  1093. 'error': '无效的阈值值,必须为正数'
  1094. }), 400
  1095. # 更新当前应用的阈值配置
  1096. current_app.config['THRESHOLD'] = int(new_threshold)
  1097. return jsonify({
  1098. 'success': True,
  1099. 'message': f'阈值已更新为 {new_threshold}',
  1100. 'new_threshold': new_threshold
  1101. })
  1102. except Exception as e:
  1103. logging.error(f"更新阈值失败: {str(e)}")
  1104. return jsonify({
  1105. 'error': f'更新阈值失败: {str(e)}'
  1106. }), 500
  1107. @bp.route('/get-threshold', methods=['GET'])
  1108. def get_threshold():
  1109. """
  1110. 获取当前训练阈值的API接口
  1111. @return: JSON响应
  1112. """
  1113. try:
  1114. current_threshold = current_app.config['THRESHOLD']
  1115. default_threshold = current_app.config['DEFAULT_THRESHOLD']
  1116. return jsonify({
  1117. 'current_threshold': current_threshold,
  1118. 'default_threshold': default_threshold
  1119. })
  1120. except Exception as e:
  1121. logging.error(f"获取阈值失败: {str(e)}")
  1122. return jsonify({
  1123. 'error': f'获取阈值失败: {str(e)}'
  1124. }), 500
  1125. @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
  1126. def set_current_dataset(data_type, dataset_id):
  1127. """
  1128. 将指定数据集设置为current数据集
  1129. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1130. @param dataset_id: 要设置为current的数据集ID
  1131. @return: JSON响应
  1132. """
  1133. Session = sessionmaker(bind=db.engine)
  1134. session = Session()
  1135. try:
  1136. # 验证数据集存在且类型匹配
  1137. dataset = session.query(Datasets)\
  1138. .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
  1139. .first()
  1140. if not dataset:
  1141. return jsonify({
  1142. 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
  1143. }), 404
  1144. # 根据数据类型选择表
  1145. if data_type == 'reduce':
  1146. table = CurrentReduce
  1147. table_name = 'current_reduce'
  1148. elif data_type == 'reflux':
  1149. table = CurrentReflux
  1150. table_name = 'current_reflux'
  1151. else:
  1152. return jsonify({'error': '无效的数据集类型'}), 400
  1153. # 清空current表
  1154. session.query(table).delete()
  1155. # 重置自增主键计数器
  1156. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  1157. # 从指定数据集复制数据到current表
  1158. dataset_table_name = f"dataset_{dataset_id}"
  1159. copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
  1160. session.execute(copy_sql)
  1161. session.commit()
  1162. return jsonify({
  1163. 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
  1164. 'dataset_id': dataset_id,
  1165. 'dataset_name': dataset.Dataset_name,
  1166. 'row_count': dataset.Row_count
  1167. }), 200
  1168. except Exception as e:
  1169. session.rollback()
  1170. logger.error(f'设置current数据集失败: {str(e)}')
  1171. return jsonify({'error': str(e)}), 500
  1172. finally:
  1173. session.close()
  1174. @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
  1175. def get_model_history(data_type):
  1176. """
  1177. 获取模型训练历史数据的API接口
  1178. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1179. @return: JSON响应,包含时间序列的模型性能数据
  1180. """
  1181. Session = sessionmaker(bind=db.engine)
  1182. session = Session()
  1183. try:
  1184. # 查询所有自动生成的数据集,按时间排序
  1185. datasets = session.query(Datasets).filter(
  1186. Datasets.Dataset_type == data_type,
  1187. Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
  1188. ).order_by(Datasets.Uploaded_at).all()
  1189. history_data = []
  1190. for dataset in datasets:
  1191. # 查找对应的自动训练模型
  1192. model = session.query(Models).filter(
  1193. Models.DatasetID == dataset.Dataset_ID,
  1194. Models.Model_name.like(f'auto_trained_{data_type}_%')
  1195. ).first()
  1196. if model and model.Performance_score is not None:
  1197. # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
  1198. created_at = model.Created_at.isoformat() if model.Created_at else None
  1199. history_data.append({
  1200. 'dataset_id': dataset.Dataset_ID,
  1201. 'row_count': dataset.Row_count,
  1202. 'model_id': model.ModelID,
  1203. 'model_name': model.Model_name,
  1204. 'performance_score': float(model.Performance_score),
  1205. 'timestamp': created_at
  1206. })
  1207. # 按时间戳排序
  1208. history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
  1209. # 构建返回数据,分离各个指标序列便于前端绘图
  1210. response_data = {
  1211. 'data_type': data_type,
  1212. 'timestamps': [item['timestamp'] for item in history_data],
  1213. 'row_counts': [item['row_count'] for item in history_data],
  1214. 'performance_scores': [item['performance_score'] for item in history_data],
  1215. 'model_details': history_data # 保留完整数据供前端使用
  1216. }
  1217. return jsonify(response_data), 200
  1218. except Exception as e:
  1219. logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
  1220. return jsonify({'error': str(e)}), 500
  1221. finally:
  1222. session.close()
  1223. @bp.route('/batch-delete-datasets', methods=['POST'])
  1224. def batch_delete_datasets():
  1225. """
  1226. 批量删除数据集的API接口
  1227. @body_param dataset_ids: 要删除的数据集ID列表
  1228. @return: JSON响应
  1229. """
  1230. try:
  1231. data = request.get_json()
  1232. dataset_ids = data.get('dataset_ids', [])
  1233. if not dataset_ids:
  1234. return jsonify({'error': '未提供数据集ID列表'}), 400
  1235. results = {
  1236. 'success': [],
  1237. 'failed': [],
  1238. 'protected': [] # 被模型使用的数据集
  1239. }
  1240. for dataset_id in dataset_ids:
  1241. try:
  1242. # 调用单个删除接口
  1243. response = delete_dataset_endpoint(dataset_id)
  1244. # 解析响应
  1245. if response[1] == 200:
  1246. results['success'].append(dataset_id)
  1247. elif response[1] == 400 and 'models' in response[0].json:
  1248. # 数据集被模型保护
  1249. results['protected'].append({
  1250. 'id': dataset_id,
  1251. 'models': response[0].json['models']
  1252. })
  1253. else:
  1254. results['failed'].append({
  1255. 'id': dataset_id,
  1256. 'reason': response[0].json.get('error', '删除失败')
  1257. })
  1258. except Exception as e:
  1259. logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
  1260. results['failed'].append({
  1261. 'id': dataset_id,
  1262. 'reason': str(e)
  1263. })
  1264. # 构建响应消息
  1265. message = f"成功删除 {len(results['success'])} 个数据集"
  1266. if results['protected']:
  1267. message += f", {len(results['protected'])} 个数据集被保护"
  1268. if results['failed']:
  1269. message += f", {len(results['failed'])} 个数据集删除失败"
  1270. return jsonify({
  1271. 'message': message,
  1272. 'results': results
  1273. }), 200
  1274. except Exception as e:
  1275. logger.error(f'批量删除数据集失败: {str(e)}')
  1276. return jsonify({'error': str(e)}), 500
  1277. @bp.route('/batch-delete-models', methods=['POST'])
  1278. def batch_delete_models():
  1279. """
  1280. 批量删除模型的API接口
  1281. @body_param model_ids: 要删除的模型ID列表
  1282. @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
  1283. @return: JSON响应
  1284. """
  1285. try:
  1286. data = request.get_json()
  1287. model_ids = data.get('model_ids', [])
  1288. delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
  1289. if not model_ids:
  1290. return jsonify({'error': '未提供模型ID列表'}), 400
  1291. results = {
  1292. 'success': [],
  1293. 'failed': [],
  1294. 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
  1295. }
  1296. for model_id in model_ids:
  1297. try:
  1298. # 调用单个删除接口
  1299. response = delete_model(model_id, delete_dataset=delete_datasets)
  1300. # 解析响应
  1301. if response[1] == 200:
  1302. results['success'].append(model_id)
  1303. # 如果删除了关联数据集,记录数据集ID
  1304. if 'dataset_info' in response[0].json:
  1305. results['datasets_deleted'].append(
  1306. response[0].json['dataset_info']['dataset_id']
  1307. )
  1308. else:
  1309. results['failed'].append({
  1310. 'id': model_id,
  1311. 'reason': response[0].json.get('error', '删除失败')
  1312. })
  1313. except Exception as e:
  1314. logger.error(f'删除模型 {model_id} 失败: {str(e)}')
  1315. results['failed'].append({
  1316. 'id': model_id,
  1317. 'reason': str(e)
  1318. })
  1319. # 构建响应消息
  1320. message = f"成功删除 {len(results['success'])} 个模型"
  1321. if results['datasets_deleted']:
  1322. message += f", {len(results['datasets_deleted'])} 个关联数据集"
  1323. if results['failed']:
  1324. message += f", {len(results['failed'])} 个模型删除失败"
  1325. return jsonify({
  1326. 'message': message,
  1327. 'results': results
  1328. }), 200
  1329. except Exception as e:
  1330. logger.error(f'批量删除模型失败: {str(e)}')
  1331. return jsonify({'error': str(e)}), 500
  1332. @bp.route('/kriging_interpolation', methods=['POST'])
  1333. def kriging_interpolation():
  1334. try:
  1335. data = request.get_json()
  1336. required = ['file_name', 'emission_column', 'points']
  1337. if not all(k in data for k in required):
  1338. return jsonify({"error": "Missing parameters"}), 400
  1339. # 添加坐标顺序验证
  1340. points = data['points']
  1341. if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
  1342. return jsonify({"error": "Invalid points format"}), 400
  1343. result = create_kriging(
  1344. data['file_name'],
  1345. data['emission_column'],
  1346. data['points']
  1347. )
  1348. return jsonify(result)
  1349. except Exception as e:
  1350. return jsonify({"error": str(e)}), 500