RF_filt.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. # '''
  2. #模型筛选
  3. # '''
  4. ## 导入常用基本包
  5. import os
  6. import pandas as pd
  7. import numpy as np
  8. from PIL import Image
  9. from model_saver import save_model
  10. # 机器学习模型导入
  11. from sklearn.ensemble import RandomForestRegressor
  12. from sklearn.model_selection import cross_val_score,cross_val_predict
  13. from sklearn.model_selection import train_test_split
  14. from sklearn.metrics import mean_squared_error
  15. import numpy as np
  16. import pandas as pd
  17. ## 导入常用辅助函数
  18. from sklearn.model_selection import train_test_split
  19. from sklearn.model_selection import GridSearchCV
  20. from sklearn.model_selection import cross_val_score
  21. from sklearn.model_selection import cross_val_predict
  22. ## 导入数据处理函数
  23. from sklearn.preprocessing import StandardScaler
  24. from sklearn.preprocessing import MinMaxScaler
  25. ## 导入评分函数
  26. from sklearn.metrics import r2_score
  27. from sklearn.metrics import mean_squared_error
  28. from sklearn.metrics import mean_absolute_error
  29. from sklearn.metrics import accuracy_score
  30. from sklearn.metrics import log_loss
  31. from sklearn.metrics import roc_auc_score
  32. # 导入数据
  33. data=pd.read_excel('model_optimize\data\data_filt.xlsx')
  34. x = data.iloc[:,1:10]
  35. y = data.iloc[:,-1]
  36. # 为 x 赋予列名
  37. x.columns = [
  38. 'organic_matter', # OM g/kg
  39. 'chloride', # CL g/kg
  40. 'cec', # CEC cmol/kg
  41. 'h_concentration', # H+ cmol/kg
  42. 'hn', # HN mg/kg
  43. 'al_concentration', # Al3+ cmol/kg
  44. 'free_alumina', # Free alumina g/kg
  45. 'free_iron', # Free iron oxides g/kg
  46. 'delta_ph' # ΔpH
  47. ]
  48. y.name = 'target_ph'
  49. Xtrain, Xtest, Ytrain, Ytest=train_test_split(x, y, test_size=0.2)
  50. # 筛选随机种子
  51. score_5cv_all = []
  52. for i in range(0, 200, 1):
  53. rfc =RandomForestRegressor(random_state=i)
  54. score_5cv =cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
  55. score_5cv_all.append(score_5cv)
  56. pass
  57. score_max_5cv = max(score_5cv_all)
  58. random_state_5cv = range(0, 200)[score_5cv_all.index(max(score_5cv_all))] # 5cv最大得分对应的随机种子
  59. print("最大5cv得分:{}".format(score_max_5cv),
  60. "random_5cv:{}".format(random_state_5cv))
  61. # 筛选随机树数目
  62. score_5cv_all = []
  63. for i in range(1, 400, 1):
  64. rfc = RandomForestRegressor(n_estimators=i,
  65. random_state=random_state_5cv)
  66. score_5cv = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
  67. score_5cv_all.append(score_5cv)
  68. pass
  69. score_max_5cv = max(score_5cv_all)
  70. n_est_5cv = range(1,400)[score_5cv_all.index(score_max_5cv)] # 5cv最大得分对应的树数目
  71. print("最大5cv得分:{}".format(score_max_5cv),
  72. "n_est_5cv:{}".format(n_est_5cv)) # 5cv最大得分对应的树数目??
  73. score_test_all = []
  74. # 筛选最大深度
  75. score_5cv_all = []
  76. for i in range(1, 300, 1):
  77. rfc = RandomForestRegressor(n_estimators=n_est_5cv
  78. , random_state=random_state_5cv
  79. , max_depth=i)
  80. score_5cv = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
  81. score_5cv_all.append(score_5cv)
  82. pass
  83. score_max_5cv = max(score_5cv_all)
  84. max_depth_5cv = range(1,300)[score_5cv_all.index(score_max_5cv)]
  85. print(
  86. "最大5cv得分:{}".format(score_max_5cv),
  87. "max_depth_5cv:{}".format(max_depth_5cv))
  88. # 确定参数进行训练
  89. rfc = RandomForestRegressor(n_estimators=n_est_5cv,random_state=random_state_5cv,max_depth=max_depth_5cv)
  90. CV_score = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
  91. CV_predictions = cross_val_predict(rfc, Xtrain, Ytrain, cv=5)
  92. rmse1 = np.sqrt(mean_squared_error(Ytrain,CV_predictions))
  93. regressor = rfc.fit(Xtrain, Ytrain)
  94. test_predictions = regressor.predict(Xtest)
  95. score_test = regressor.score(Xtest,Ytest)
  96. rmse2 = np.sqrt(mean_squared_error(Ytest,test_predictions))
  97. print("5cv:",CV_score)
  98. print("rmse_5CV",rmse1)
  99. print("test:",score_test)
  100. print("rmse_test",rmse2)
  101. # 保存训练好的模型
  102. custom_path='model_optimize\pkl' # 模型保存路径
  103. prefix='rf_model_' # 模型文件名前缀
  104. save_model(rfc, custom_path, prefix)