12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805 |
- import sqlite3
- import uuid
- from io import BytesIO
- from flask import Blueprint, request, jsonify, current_app, send_file, session
- from werkzeug.security import check_password_hash, generate_password_hash
- from werkzeug.utils import secure_filename, send_from_directory
- from .model import predict, train_and_save_model, calculate_model_score
- import pandas as pd
- from . import db # 从 app 包导入 db 实例
- from sqlalchemy.engine.reflection import Inspector
- from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
- import os
- from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
- clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
- predict_to_Q, Q_to_t_ha, create_kriging
- from sqlalchemy.orm import sessionmaker
- import logging
- from sqlalchemy import text, select, MetaData, Table, func
- from .tasks import train_model_task
- from datetime import datetime
- # 配置日志
- logging.basicConfig(level=logging.DEBUG)
- logger = logging.getLogger(__name__)
- # 创建蓝图 (Blueprint),用于分离路由
- bp = Blueprint('routes', __name__)
- # 密码加密
- def hash_password(password):
- return generate_password_hash(password)
- def get_db():
- """ 获取数据库连接 """
- return sqlite3.connect(current_app.config['DATABASE'])
- # 添加一个新的辅助函数来检查数据集大小并触发训练
- def check_and_trigger_training(session, dataset_type, dataset_df):
- """
- 检查当前数据集大小是否跨越新的阈值点并触发训练
-
- Args:
- session: 数据库会话
- dataset_type: 数据集类型 ('reduce' 或 'reflux')
- dataset_df: 数据集 DataFrame
-
- Returns:
- tuple: (是否触发训练, 任务ID)
- """
- try:
- # 根据数据集类型选择表
- table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
-
- # 获取当前记录数
- current_count = session.query(func.count()).select_from(table).scalar()
-
- # 获取新增的记录数(从request.files中获取的DataFrame长度)
- new_records = len(dataset_df) # 需要从上层函数传入
-
- # 计算新增数据前的记录数
- previous_count = current_count - new_records
-
- # 设置阈值
- THRESHOLD = current_app.config['THRESHOLD']
-
- # 计算上一个阈值点(基于新增前的数据量)
- last_threshold = previous_count // THRESHOLD * THRESHOLD
- # 计算当前所在阈值点
- current_threshold = current_count // THRESHOLD * THRESHOLD
-
- # 检查是否跨越了新的阈值点
- if current_threshold > last_threshold and current_count >= THRESHOLD:
- # 触发异步训练任务
- task = train_model_task.delay(
- model_type=current_app.config['DEFAULT_MODEL_TYPE'],
- model_name=f'auto_trained_{dataset_type}_{current_threshold}',
- model_description=f'Auto trained model at {current_threshold} records threshold',
- data_type=dataset_type
- )
- return True, task.id
-
- return False, None
-
- except Exception as e:
- logging.error(f"检查并触发训练失败: {str(e)}")
- return False, None
- @bp.route('/upload-dataset', methods=['POST'])
- def upload_dataset():
- # 创建 session
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- if 'file' not in request.files:
- return jsonify({'error': 'No file part'}), 400
- file = request.files['file']
- if file.filename == '' or not allowed_file(file.filename):
- return jsonify({'error': 'No selected file or invalid file type'}), 400
- dataset_name = request.form.get('dataset_name')
- dataset_description = request.form.get('dataset_description', 'No description provided')
- dataset_type = request.form.get('dataset_type')
- if not dataset_type:
- return jsonify({'error': 'Dataset type is required'}), 400
- new_dataset = Datasets(
- Dataset_name=dataset_name,
- Dataset_description=dataset_description,
- Row_count=0,
- Status='Datasets_upgraded',
- Dataset_type=dataset_type,
- Uploaded_at=datetime.now()
- )
- session.add(new_dataset)
- session.commit()
- unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
- upload_folder = current_app.config['UPLOAD_FOLDER']
- file_path = os.path.join(upload_folder, unique_filename)
- file.save(file_path)
- dataset_df = pd.read_excel(file_path)
- new_dataset.Row_count = len(dataset_df)
- new_dataset.Status = 'excel_file_saved success'
- session.commit()
- # 处理列名
- dataset_df = clean_column_names(dataset_df)
- dataset_df = rename_columns_for_model(dataset_df, dataset_type)
- column_types = infer_column_types(dataset_df)
- dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
- insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
- # 根据 dataset_type 决定插入到哪个已有表
- if dataset_type == 'reduce':
- insert_data_into_existing_table(session, dataset_df, CurrentReduce)
- elif dataset_type == 'reflux':
- insert_data_into_existing_table(session, dataset_df, CurrentReflux)
- session.commit()
- # 在完成数据插入后,检查是否需要触发训练
- training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
- response_data = {
- 'message': f'Dataset {dataset_name} uploaded successfully!',
- 'dataset_id': new_dataset.Dataset_ID,
- 'filename': unique_filename,
- 'training_triggered': training_triggered
- }
-
- if training_triggered:
- response_data['task_id'] = task_id
- response_data['message'] += ' Auto-training has been triggered.'
- return jsonify(response_data), 201
- except Exception as e:
- session.rollback()
- logging.error('Failed to process the dataset upload:', exc_info=True)
- return jsonify({'error': str(e)}), 500
-
- finally:
- # 确保 session 总是被关闭
- if session:
- session.close()
- @bp.route('/train-and-save-model', methods=['POST'])
- def train_and_save_model_endpoint():
- # 创建 sessionmaker 实例
- Session = sessionmaker(bind=db.engine)
- session = Session()
- data = request.get_json()
- # 从请求中解析参数
- model_type = data.get('model_type')
- model_name = data.get('model_name')
- model_description = data.get('model_description')
- data_type = data.get('data_type')
- dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
- try:
- # 调用训练和保存模型的函数
- result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
-
- model_id = result[1] if result else None
-
- # 计算模型评分
- if model_id:
- model_info = session.query(Models).filter(Models.ModelID == model_id).first()
- if model_info:
- score = calculate_model_score(model_info)
- # 更新模型评分
- model_info.Performance_score = score
- session.commit()
- result = {'model_id': model_id, 'model_score': score}
- # 返回成功响应
- return jsonify({
- 'message': 'Model trained and saved successfully',
- 'result': result
- }), 200
- except Exception as e:
- session.rollback()
- logging.error('Failed to process the model training:', exc_info=True)
- return jsonify({
- 'error': 'Failed to train and save model',
- 'message': str(e)
- }), 500
- finally:
- session.close()
- @bp.route('/predict', methods=['POST'])
- def predict_route():
- # 创建 sessionmaker 实例
- Session = sessionmaker(bind=db.engine)
- session = Session()
- try:
- data = request.get_json()
- model_id = data.get('model_id') # 提取模型名称
- parameters = data.get('parameters', {}) # 提取所有变量
- # 根据model_id获取模型Data_type
- model_info = session.query(Models).filter(Models.ModelID == model_id).first()
- if not model_info:
- return jsonify({'error': 'Model not found'}), 404
- data_type = model_info.Data_type
- input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
- # 如果为reduce,则不需要传入target_ph
- if data_type == 'reduce':
- # 获取传入的init_ph、target_ph参数
- init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
- target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
- # 从输入数据中删除'target_pH'列
- input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
- input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
- predictions = predict(session, input_data_rename, model_id) # 调用预测函数
- if data_type == 'reduce':
- predictions = predictions[0]
- # 将预测结果转换为Q
- Q = predict_to_Q(predictions, init_ph, target_ph)
- predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
- print(predictions)
- return jsonify({'result': predictions}), 200
- except Exception as e:
- logging.error('Failed to predict:', exc_info=True)
- return jsonify({'error': str(e)}), 400
- # 为指定模型计算评分Performance_score,需要提供model_id
- @bp.route('/score-model/<int:model_id>', methods=['POST'])
- def score_model(model_id):
- # 创建 sessionmaker 实例
- Session = sessionmaker(bind=db.engine)
- session = Session()
- try:
- model_info = session.query(Models).filter(Models.ModelID == model_id).first()
- if not model_info:
- return jsonify({'error': 'Model not found'}), 404
- # 计算模型评分
- score = calculate_model_score(model_info)
- # 更新模型记录中的评分
- model_info.Performance_score = score
- session.commit()
- return jsonify({'message': 'Model scored successfully', 'score': score}), 200
- except Exception as e:
- logging.error('Failed to process the dataset upload:', exc_info=True)
- return jsonify({'error': str(e)}), 400
- finally:
- session.close()
- @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
- def delete_dataset_endpoint(dataset_id):
- """
- 删除数据集的API接口
-
- @param dataset_id: 要删除的数据集ID
- @return: JSON响应
- """
- # 创建 sessionmaker 实例
- Session = sessionmaker(bind=db.engine)
- session = Session()
- try:
- # 查询数据集
- dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
- if not dataset:
- return jsonify({'error': '未找到数据集'}), 404
- # 检查是否有模型使用了该数据集
- models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
- if models_using_dataset:
- models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
- return jsonify({
- 'error': '无法删除数据集,因为以下模型正在使用它',
- 'models': models_info
- }), 400
- # 删除Excel文件
- filename = f"dataset_{dataset.Dataset_ID}.xlsx"
- file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
- if os.path.exists(file_path):
- try:
- os.remove(file_path)
- except OSError as e:
- logger.error(f'删除文件失败: {str(e)}')
- return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
- # 删除数据表
- table_name = f"dataset_{dataset.Dataset_ID}"
- session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
- # 删除数据集记录
- session.delete(dataset)
- session.commit()
- return jsonify({
- 'message': '数据集删除成功',
- 'deleted_files': [filename]
- }), 200
- except Exception as e:
- session.rollback()
- logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
- return jsonify({'error': str(e)}), 500
- finally:
- session.close()
- @bp.route('/tables', methods=['GET'])
- def list_tables():
- engine = db.engine # 使用 db 实例的 engine
- inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
- table_names = inspector.get_table_names() # 获取所有表名
- return jsonify(table_names) # 以 JSON 形式返回表名列表
- @bp.route('/models/<int:model_id>', methods=['GET'])
- def get_model(model_id):
- """
- 获取单个模型信息的API接口
-
- @param model_id: 模型ID
- @return: JSON响应
- """
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- model = session.query(Models).filter_by(ModelID=model_id).first()
- if model:
- return jsonify({
- 'ModelID': model.ModelID,
- 'Model_name': model.Model_name,
- 'Model_type': model.Model_type,
- 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
- 'Description': model.Description,
- 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
- 'Data_type': model.Data_type
- })
- else:
- return jsonify({'message': '未找到模型'}), 404
-
- except Exception as e:
- logger.error(f'获取模型信息失败: {str(e)}')
- return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
-
- finally:
- session.close()
- # 显示切换模型
- @bp.route('/models', methods=['GET'])
- def get_models():
- session = None
- try:
- # 创建 session
- Session = sessionmaker(bind=db.engine)
- session = Session()
- # 查询所有模型
- models = session.query(Models).all()
- logger.debug(f"Models found: {models}") # 打印查询的模型数据
- if not models:
- return jsonify({'message': 'No models found'}), 404
- # 将模型数据转换为字典列表
- models_list = [
- {
- 'ModelID': model.ModelID,
- 'ModelName': model.Model_name,
- 'ModelType': model.Model_type,
- 'CreatedAt': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
- 'Description': model.Description,
- 'DatasetID': model.DatasetID,
- 'ModelFilePath': model.ModelFilePath,
- 'DataType': model.Data_type,
- 'PerformanceScore': model.Performance_score
- }
- for model in models
- ]
- return jsonify(models_list), 200
- except Exception as e:
- return jsonify({'error': str(e)}), 400
- finally:
- if session:
- session.close()
- @bp.route('/model-parameters', methods=['GET'])
- def get_all_model_parameters():
- """
- 获取所有模型参数的API接口
-
- @return: JSON响应
- """
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- parameters = session.query(ModelParameters).all()
- if parameters:
- result = [
- {
- 'ParamID': param.ParamID,
- 'ModelID': param.ModelID,
- 'ParamName': param.ParamName,
- 'ParamValue': param.ParamValue
- }
- for param in parameters
- ]
- return jsonify(result)
- else:
- return jsonify({'message': '未找到任何参数'}), 404
-
- except Exception as e:
- logger.error(f'获取所有模型参数失败: {str(e)}')
- return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
-
- finally:
- session.close()
- @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
- def get_model_parameters(model_id):
- try:
- model = Models.query.filter_by(ModelID=model_id).first()
- if model:
- # 获取该模型的所有参数
- parameters = [
- {
- 'ParamID': param.ParamID,
- 'ParamName': param.ParamName,
- 'ParamValue': param.ParamValue
- }
- for param in model.parameters
- ]
-
- # 返回模型参数信息
- return jsonify({
- 'ModelID': model.ModelID,
- 'ModelName': model.ModelName,
- 'ModelType': model.ModelType,
- 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
- 'Description': model.Description,
- 'Parameters': parameters
- })
- else:
- return jsonify({'message': 'Model not found'}), 404
- except Exception as e:
- return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
- # 定义添加数据库记录的 API 接口
- @bp.route('/add_item', methods=['POST'])
- def add_item():
- """
- 接收 JSON 格式的请求体,包含表名和要插入的数据。
- 尝试将数据插入到指定的表中,并进行字段查重。
- :return:
- """
- try:
- # 确保请求体是 JSON 格式
- data = request.get_json()
- if not data:
- raise ValueError("No JSON data provided")
- table_name = data.get('table')
- item_data = data.get('item')
- if not table_name or not item_data:
- return jsonify({'error': 'Missing table name or item data'}), 400
- # 定义各个表的字段查重规则
- duplicate_check_rules = {
- 'users': ['email', 'username'],
- 'products': ['product_code'],
- 'current_reduce': ['Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
- 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
- # 其他表和规则
- }
- # 获取该表的查重字段
- duplicate_columns = duplicate_check_rules.get(table_name)
- if not duplicate_columns:
- return jsonify({'error': 'No duplicate check rule for this table'}), 400
- # 动态构建查询条件,逐一检查是否有重复数据
- condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
- duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
- result = db.session.execute(text(duplicate_query), item_data).fetchone()
- if result:
- return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
- # 动态构建 SQL 语句,进行插入操作
- columns = ', '.join(item_data.keys())
- placeholders = ', '.join([f":{key}" for key in item_data.keys()])
- sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
- # 直接执行插入操作,无需显式的事务管理
- db.session.execute(text(sql), item_data)
- # 提交事务
- db.session.commit()
- # 返回成功响应
- return jsonify({'success': True, 'message': 'Item added successfully'}), 201
- except ValueError as e:
- return jsonify({'error': str(e)}), 400
- except KeyError as e:
- return jsonify({'error': f'Missing data field: {e}'}), 400
- except sqlite3.IntegrityError as e:
- return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
- except sqlite3.Error as e:
- return jsonify({'error': '数据库错误', 'details': str(e)}), 500
- @bp.route('/delete_item', methods=['POST'])
- def delete_item():
- """
- 删除数据库记录的 API 接口
- """
- data = request.get_json()
- table_name = data.get('table')
- condition = data.get('condition')
- # 检查表名和条件是否提供
- if not table_name or not condition:
- return jsonify({
- "success": False,
- "message": "缺少表名或条件参数"
- }), 400
- # 尝试从条件字符串中解析键和值
- try:
- key, value = condition.split('=')
- key = key.strip() # 去除多余的空格
- value = value.strip().strip("'\"") # 去除多余的空格和引号
- except ValueError:
- return jsonify({
- "success": False,
- "message": "条件格式错误,应为 'key=value'"
- }), 400
- # 准备 SQL 删除语句
- sql = f"DELETE FROM {table_name} WHERE {key} = :value"
- try:
- # 使用 SQLAlchemy 执行删除
- with db.session.begin():
- result = db.session.execute(text(sql), {"value": value})
- # 检查是否有记录被删除
- if result.rowcount == 0:
- return jsonify({
- "success": False,
- "message": "未找到符合条件的记录"
- }), 404
- return jsonify({
- "success": True,
- "message": "记录删除成功"
- }), 200
- except Exception as e:
- return jsonify({
- "success": False,
- "message": f"删除失败: {e}"
- }), 500
- # 定义修改数据库记录的 API 接口
- @bp.route('/update_item', methods=['PUT'])
- def update_record():
- """
- 接收 JSON 格式的请求体,包含表名和更新的数据。
- 尝试更新指定的记录。
- """
- data = request.get_json()
- # 检查必要的数据是否提供
- if not data or 'table' not in data or 'item' not in data:
- return jsonify({
- "success": False,
- "message": "请求数据不完整"
- }), 400
- table_name = data['table']
- item = data['item']
- # 假设 item 的第一个键是 ID
- id_key = next(iter(item.keys())) # 获取第一个键
- record_id = item.get(id_key)
- if not record_id:
- return jsonify({
- "success": False,
- "message": "缺少记录 ID"
- }), 400
- # 获取更新的字段和值
- updates = {key: value for key, value in item.items() if key != id_key}
- if not updates:
- return jsonify({
- "success": False,
- "message": "没有提供需要更新的字段"
- }), 400
- # 动态构建 SQL
- set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
- sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
- # 添加 ID 到参数
- updates['id_value'] = record_id
- try:
- # 使用 SQLAlchemy 执行更新
- with db.session.begin():
- result = db.session.execute(text(sql), updates)
- # 检查是否有更新的记录
- if result.rowcount == 0:
- return jsonify({
- "success": False,
- "message": "未找到要更新的记录"
- }), 404
- return jsonify({
- "success": True,
- "message": "数据更新成功"
- }), 200
- except Exception as e:
- # 捕获所有异常并返回
- return jsonify({
- "success": False,
- "message": f"更新失败: {str(e)}"
- }), 500
- # 定义查询数据库记录的 API 接口
- @bp.route('/search/record', methods=['GET'])
- def sql_search():
- """
- 接收 JSON 格式的请求体,包含表名和要查询的 ID。
- 尝试查询指定 ID 的记录并返回结果。
- :return:
- """
- try:
- data = request.get_json()
- # 表名
- sql_table = data['table']
- # 要搜索的 ID
- Id = data['id']
- # 连接到数据库
- cur = db.cursor()
- # 构造查询语句
- sql = f"SELECT * FROM {sql_table} WHERE id = ?"
- # 执行查询
- cur.execute(sql, (Id,))
- # 获取查询结果
- rows = cur.fetchall()
- column_names = [desc[0] for desc in cur.description]
- # 检查是否有结果
- if not rows:
- return jsonify({'error': '未查找到对应数据。'}), 400
- # 构造响应数据
- results = []
- for row in rows:
- result = {column_names[i]: row[i] for i in range(len(row))}
- results.append(result)
- # 关闭游标和数据库连接
- cur.close()
- db.close()
- # 返回 JSON 响应
- return jsonify(results), 200
- except sqlite3.Error as e:
- # 如果发生数据库错误,返回错误信息
- return jsonify({'error': str(e)}), 400
- except KeyError as e:
- # 如果请求数据中缺少必要的键,返回错误信息
- return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
- # 定义提供数据库列表,用于展示表格的 API 接口
- @bp.route('/table', methods=['POST'])
- def get_table():
- data = request.get_json()
- table_name = data.get('table')
- if not table_name:
- return jsonify({'error': '需要表名'}), 400
- try:
- # 创建 sessionmaker 实例
- Session = sessionmaker(bind=db.engine)
- session = Session()
- # 动态获取表的元数据
- metadata = MetaData()
- table = Table(table_name, metadata, autoload_with=db.engine)
- # 从数据库中查询所有记录
- query = select(table)
- result = session.execute(query).fetchall()
- # 将结果转换为列表字典形式
- rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
- # 获取列名
- headers = [column.name for column in table.columns]
- return jsonify(rows=rows, headers=headers), 200
- except Exception as e:
- return jsonify({'error': str(e)}), 400
- finally:
- # 关闭 session
- session.close()
- @bp.route('/train-model-async', methods=['POST'])
- def train_model_async():
- """
- 异步训练模型的API接口
- """
- try:
- data = request.get_json()
-
- # 从请求中获取参数
- model_type = data.get('model_type')
- model_name = data.get('model_name')
- model_description = data.get('model_description')
- data_type = data.get('data_type')
- dataset_id = data.get('dataset_id', None)
-
- # 验证必要参数
- if not all([model_type, model_name, data_type]):
- return jsonify({
- 'error': 'Missing required parameters'
- }), 400
-
- # 如果提供了dataset_id,验证数据集是否存在
- if dataset_id:
- Session = sessionmaker(bind=db.engine)
- session = Session()
- try:
- dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
- if not dataset:
- return jsonify({
- 'error': f'Dataset with ID {dataset_id} not found'
- }), 404
- finally:
- session.close()
-
- # 启动异步任务
- task = train_model_task.delay(
- model_type=model_type,
- model_name=model_name,
- model_description=model_description,
- data_type=data_type,
- dataset_id=dataset_id
- )
-
- # 返回任务ID
- return jsonify({
- 'task_id': task.id,
- 'message': 'Model training started'
- }), 202
-
- except Exception as e:
- logging.error('Failed to start async training task:', exc_info=True)
- return jsonify({
- 'error': str(e)
- }), 500
- @bp.route('/task-status/<task_id>', methods=['GET'])
- def get_task_status(task_id):
- """
- 获取异步任务状态的API接口
- """
- try:
- task = train_model_task.AsyncResult(task_id)
-
- if task.state == 'PENDING':
- response = {
- 'state': task.state,
- 'status': 'Task is waiting for execution'
- }
- elif task.state == 'FAILURE':
- response = {
- 'state': task.state,
- 'status': 'Task failed',
- 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
- }
- elif task.state == 'SUCCESS':
- response = {
- 'state': task.state,
- 'status': 'Task completed successfully',
- 'result': task.get()
- }
- else:
- response = {
- 'state': task.state,
- 'status': 'Task is in progress'
- }
-
- return jsonify(response), 200
-
- except Exception as e:
- return jsonify({
- 'error': str(e)
- }), 500
- @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
- def delete_model_route(model_id):
- # 将URL参数转换为布尔值
- delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
-
- # 调用原始函数
- return delete_model(model_id, delete_dataset=delete_dataset_param)
- def delete_model(model_id, delete_dataset=False):
- """
- 删除指定模型的API接口
-
- @param model_id: 要删除的模型ID
- @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
- @return: JSON响应
- """
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- # 查询模型信息
- model = session.query(Models).filter_by(ModelID=model_id).first()
- if not model:
- return jsonify({'error': '未找到指定模型'}), 404
-
- dataset_id = model.DatasetID
-
- # 1. 先删除模型记录
- session.delete(model)
- session.commit()
-
- # 2. 删除模型文件
- model_file = f"rf_model_{model_id}.pkl"
- model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
- if os.path.exists(model_path):
- try:
- os.remove(model_path)
- except OSError as e:
- # 如果删除文件失败,回滚数据库操作
- session.rollback()
- logger.error(f'删除模型文件失败: {str(e)}')
- return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
- # 3. 如果需要删除关联的数据集
- if delete_dataset and dataset_id:
- try:
- dataset_response = delete_dataset_endpoint(dataset_id)
- if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
- # 如果删除数据集失败,回滚之前的操作
- session.rollback()
- return jsonify({
- 'error': '删除关联数据集失败',
- 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
- }), 500
- except Exception as e:
- session.rollback()
- logger.error(f'删除关联数据集失败: {str(e)}')
- return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
- response_data = {
- 'message': '模型删除成功',
- 'deleted_files': [model_file]
- }
-
- if delete_dataset:
- response_data['dataset_info'] = {
- 'dataset_id': dataset_id,
- 'message': '关联数据集已删除'
- }
- return jsonify(response_data), 200
-
- except Exception as e:
- session.rollback()
- logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
- return jsonify({'error': str(e)}), 500
- finally:
- session.close()
- # 添加一个新的API端点来清空指定数据集
- @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
- def clear_dataset(data_type):
- """
- 清空指定类型的数据集并递增计数
- @param data_type: 数据集类型 ('reduce' 或 'reflux')
- @return: JSON响应
- """
- # 创建 sessionmaker 实例
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- # 根据数据集类型选择表
- if data_type == 'reduce':
- table = CurrentReduce
- table_name = 'current_reduce'
- elif data_type == 'reflux':
- table = CurrentReflux
- table_name = 'current_reflux'
- else:
- return jsonify({'error': '无效的数据集类型'}), 400
-
- # 清空表内容
- session.query(table).delete()
-
- # 重置自增主键计数器
- session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
-
- session.commit()
-
- return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
-
- except Exception as e:
- session.rollback()
- return jsonify({'error': str(e)}), 500
-
- finally:
- session.close()
- # 修改了一下登录·接口
- @bp.route('/login', methods=['POST'])
- def login_user():
- data = request.get_json()
- logger.debug(f"Received login data: {data}") # 增加调试日志
- name = data.get('name')
- password = data.get('password')
- logger.info(f"Login request received for user: {name}")
- if not isinstance(name, str) or not isinstance(password, str):
- logger.warning("Username and password must be strings")
- return jsonify({"success": False, "message": "用户名和密码必须为字符串"}), 400
- if not name or not password:
- logger.warning("Username and password cannot be empty")
- return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
- query = "SELECT id, name, password FROM users WHERE name = ?"
- try:
- with get_db() as conn:
- user = conn.execute(query, (name,)).fetchone()
- if not user:
- logger.warning(f"User '{name}' does not exist")
- return jsonify({"success": False, "message": "用户名不存在"}), 400
- stored_password = user[2] # 假设 'password' 是第三个字段
- user_id = user[0] # 假设 'id' 是第一个字段
- if check_password_hash(stored_password, password):
- session['name'] = name
- logger.info(f"User '{name}' logged in successfully.")
- return jsonify({
- "success": True,
- "message": "登录成功",
- "userId": user_id,
- "name": name
- })
- else:
- logger.warning(f"Incorrect password for user '{name}'")
- return jsonify({"success": False, "message": "用户名或密码错误"}), 400
- except sqlite3.DatabaseError as db_err:
- logger.error(f"Database error during login process: {db_err}", exc_info=True)
- return jsonify({"success": False, "message": "数据库错误"}), 500
- except Exception as e:
- logger.error(f"Unexpected error during login process: {e}", exc_info=True)
- return jsonify({"success": False, "message": "登录失败"}), 500
- # 更新用户信息接口
- @bp.route('/update_user', methods=['POST'])
- def update_user():
- # 获取前端传来的数据
- data = request.get_json()
- # 打印收到的请求数据
- current_app.logger.info(f"Received data: {data}")
- user_id = data.get('userId') # 用户ID
- name = data.get('name') # 用户名
- old_password = data.get('oldPassword') # 旧密码
- new_password = data.get('newPassword') # 新密码
- logger.info(f"Update request received: user_id={user_id}, name={name}")
- # 校验传入的用户名和密码是否为空
- if not name or not old_password:
- logger.warning("用户名和旧密码不能为空")
- return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
- # 新密码和旧密码不能相同
- if new_password and old_password == new_password:
- logger.warning(f"新密码与旧密码相同:{name}")
- return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
- try:
- # 查询数据库验证用户ID
- query = "SELECT * FROM users WHERE id = :user_id"
- conn = get_db()
- user = conn.execute(query, {"user_id": user_id}).fetchone()
- if not user:
- logger.warning(f"用户ID '{user_id}' 不存在")
- return jsonify({"success": False, "message": "用户不存在"}), 400
- # 获取数据库中存储的密码(假设密码是哈希存储的)
- stored_password = user[2] # 假设密码存储在数据库的第三列
- # 校验旧密码是否正确
- if not check_password_hash(stored_password, old_password):
- logger.warning(f"旧密码错误:{name}")
- return jsonify({"success": False, "message": "旧密码错误"}), 400
- # 如果新密码非空,则更新新密码
- if new_password:
- hashed_new_password = hash_password(new_password)
- update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
- conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
- conn.commit()
- logger.info(f"User ID '{user_id}' password updated successfully.")
- # 如果用户名发生更改,则更新用户名
- if name != user[1]:
- update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
- conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
- conn.commit()
- logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
- return jsonify({"success": True, "message": "用户信息更新成功"})
- except Exception as e:
- # 记录错误日志并返回错误信息
- logger.error(f"Error updating user: {e}", exc_info=True)
- return jsonify({"success": False, "message": "更新失败"}), 500
- # 注册用户
- @bp.route('/register', methods=['POST'])
- def register_user():
- # 获取前端传来的数据
- data = request.get_json()
- name = data.get('name') # 用户名
- password = data.get('password') # 密码
- logger.info(f"Register request received: name={name}")
- # 检查用户名和密码是否为空
- if not name or not password:
- logger.warning("用户名和密码不能为空")
- return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
- # 动态获取数据库表的列名
- columns = get_column_names('users')
- logger.info(f"Database columns for 'users' table: {columns}")
- # 检查前端传来的数据是否包含数据库表中所有的必填字段
- for column in ['name', 'password']:
- if column not in columns:
- logger.error(f"缺少必填字段:{column}")
- return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
- # 对密码进行哈希处理
- hashed_password = hash_password(password)
- logger.info(f"Password hashed for user: {name}")
- # 插入到数据库
- try:
- # 检查用户是否已经存在
- query = "SELECT * FROM users WHERE name = :name"
- conn = get_db()
- user = conn.execute(query, {"name": name}).fetchone()
- if user:
- logger.warning(f"用户名 '{name}' 已存在")
- return jsonify({"success": False, "message": "用户名已存在"}), 400
- # 向数据库插入数据
- query = "INSERT INTO users (name, password) VALUES (:name, :password)"
- conn.execute(query, {"name": name, "password": hashed_password})
- conn.commit()
- logger.info(f"User '{name}' registered successfully.")
- return jsonify({"success": True, "message": "注册成功"})
- except Exception as e:
- # 记录错误日志并返回错误信息
- logger.error(f"Error registering user: {e}", exc_info=True)
- return jsonify({"success": False, "message": "注册失败"}), 500
- def get_column_names(table_name):
- """
- 动态获取数据库表的列名。
- """
- try:
- conn = get_db()
- query = f"PRAGMA table_info({table_name});"
- result = conn.execute(query).fetchall()
- conn.close()
- return [row[1] for row in result] # 第二列是列名
- except Exception as e:
- logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
- return []
- # 导出数据
- @bp.route('/export_data', methods=['GET'])
- def export_data():
- table_name = request.args.get('table')
- file_format = request.args.get('format', 'excel').lower()
- if not table_name:
- return jsonify({'error': '缺少表名参数'}), 400
- if not table_name.isidentifier():
- return jsonify({'error': '无效的表名'}), 400
- try:
- conn = get_db()
- query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
- table_exists = conn.execute(query, (table_name,)).fetchone()
- if not table_exists:
- return jsonify({'error': f"表 {table_name} 不存在"}), 404
- query = f"SELECT * FROM {table_name};"
- df = pd.read_sql(query, conn)
- output = BytesIO()
- if file_format == 'csv':
- df.to_csv(output, index=False, encoding='utf-8')
- output.seek(0)
- return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
- elif file_format == 'excel':
- df.to_excel(output, index=False, engine='openpyxl')
- output.seek(0)
- return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
- mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
- else:
- return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
- except Exception as e:
- logger.error(f"Error in export_data: {e}", exc_info=True)
- return jsonify({'error': str(e)}), 500
- # 导入数据接口
- @bp.route('/import_data', methods=['POST'])
- def import_data():
- logger.debug("Import data endpoint accessed.")
- if 'file' not in request.files:
- logger.error("No file in request.")
- return jsonify({'success': False, 'message': '文件缺失'}), 400
- file = request.files['file']
- table_name = request.form.get('table')
- if not table_name:
- logger.error("Missing table name parameter.")
- return jsonify({'success': False, 'message': '缺少表名参数'}), 400
- if file.filename == '':
- logger.error("No file selected.")
- return jsonify({'success': False, 'message': '未选择文件'}), 400
- try:
- # 保存文件到临时路径
- temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
- file.save(temp_path)
- logger.debug(f"File saved to temporary path: {temp_path}")
- # 根据文件类型读取文件
- if file.filename.endswith('.xlsx'):
- df = pd.read_excel(temp_path)
- elif file.filename.endswith('.csv'):
- df = pd.read_csv(temp_path)
- else:
- logger.error("Unsupported file format.")
- return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
- # 获取数据库列名
- db_columns = get_column_names(table_name)
- if 'id' in db_columns:
- db_columns.remove('id') # 假设 id 列是自增的,不需要处理
- if not set(db_columns).issubset(set(df.columns)):
- logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
- return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
- # 清洗数据并删除空值行
- df_cleaned = df[db_columns].dropna()
- # 统一数据类型,避免 int 和 float 合并问题
- df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
- # 获取现有的数据
- conn = get_db()
- with conn:
- existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
- # 查找重复数据
- duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
- # 如果有重复数据,删除它们
- df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
- logger.warning(f"Duplicate data detected and removed: {duplicates}")
- # 获取导入前后的数据量
- total_data = len(df_cleaned) + len(duplicates)
- new_data = len(df_cleaned)
- duplicate_data = len(duplicates)
- # 导入不重复的数据
- df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
- logger.debug(f"Imported {new_data} new records into the database.")
- # 删除临时文件
- os.remove(temp_path)
- logger.debug(f"Temporary file removed: {temp_path}")
- # 返回结果
- return jsonify({
- 'success': True,
- 'message': '数据导入成功',
- 'total_data': total_data,
- 'new_data': new_data,
- 'duplicate_data': duplicate_data
- }), 200
- except Exception as e:
- logger.error(f"Import failed: {e}", exc_info=True)
- return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
- # 模板下载接口
- @bp.route('/download_template', methods=['GET'])
- def download_template():
- """
- 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
- """
- table_name = request.args.get('table')
- if not table_name:
- return jsonify({'error': '表名参数缺失'}), 400
- columns = get_column_names(table_name)
- if not columns:
- return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
- # 不包括 ID 列
- if 'id' in columns:
- columns.remove('id')
- df = pd.DataFrame(columns=columns)
- file_format = request.args.get('format', 'excel').lower()
- try:
- if file_format == 'csv':
- output = BytesIO()
- df.to_csv(output, index=False, encoding='utf-8')
- output.seek(0)
- return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
- mimetype='text/csv')
- else:
- output = BytesIO()
- df.to_excel(output, index=False, engine='openpyxl')
- output.seek(0)
- return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
- mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
- except Exception as e:
- logger.error(f"Failed to generate template: {e}", exc_info=True)
- return jsonify({'error': '生成模板文件失败'}), 500
- @bp.route('/update-threshold', methods=['POST'])
- def update_threshold():
- """
- 更新训练阈值的API接口
-
- @body_param threshold: 新的阈值值(整数)
- @return: JSON响应
- """
- try:
- data = request.get_json()
- new_threshold = data.get('threshold')
-
- # 验证新阈值
- if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
- return jsonify({
- 'error': '无效的阈值值,必须为正数'
- }), 400
-
- # 更新当前应用的阈值配置
- current_app.config['THRESHOLD'] = int(new_threshold)
-
- return jsonify({
- 'success': True,
- 'message': f'阈值已更新为 {new_threshold}',
- 'new_threshold': new_threshold
- })
-
- except Exception as e:
- logging.error(f"更新阈值失败: {str(e)}")
- return jsonify({
- 'error': f'更新阈值失败: {str(e)}'
- }), 500
- @bp.route('/get-threshold', methods=['GET'])
- def get_threshold():
- """
- 获取当前训练阈值的API接口
-
- @return: JSON响应
- """
- try:
- current_threshold = current_app.config['THRESHOLD']
- default_threshold = current_app.config['DEFAULT_THRESHOLD']
-
- return jsonify({
- 'current_threshold': current_threshold,
- 'default_threshold': default_threshold
- })
-
- except Exception as e:
- logging.error(f"获取阈值失败: {str(e)}")
- return jsonify({
- 'error': f'获取阈值失败: {str(e)}'
- }), 500
- @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
- def set_current_dataset(data_type, dataset_id):
- """
- 将指定数据集设置为current数据集
-
- @param data_type: 数据集类型 ('reduce' 或 'reflux')
- @param dataset_id: 要设置为current的数据集ID
- @return: JSON响应
- """
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- # 验证数据集存在且类型匹配
- dataset = session.query(Datasets)\
- .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
- .first()
-
- if not dataset:
- return jsonify({
- 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
- }), 404
-
- # 根据数据类型选择表
- if data_type == 'reduce':
- table = CurrentReduce
- table_name = 'current_reduce'
- elif data_type == 'reflux':
- table = CurrentReflux
- table_name = 'current_reflux'
- else:
- return jsonify({'error': '无效的数据集类型'}), 400
-
- # 清空current表
- session.query(table).delete()
-
- # 重置自增主键计数器
- session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
-
- # 从指定数据集复制数据到current表
- dataset_table_name = f"dataset_{dataset_id}"
- copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
- session.execute(copy_sql)
-
- session.commit()
-
- return jsonify({
- 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
- 'dataset_id': dataset_id,
- 'dataset_name': dataset.Dataset_name,
- 'row_count': dataset.Row_count
- }), 200
-
- except Exception as e:
- session.rollback()
- logger.error(f'设置current数据集失败: {str(e)}')
- return jsonify({'error': str(e)}), 500
-
- finally:
- session.close()
- @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
- def get_model_history(data_type):
- """
- 获取模型训练历史数据的API接口
-
- @param data_type: 数据集类型 ('reduce' 或 'reflux')
- @return: JSON响应,包含时间序列的模型性能数据
- """
- Session = sessionmaker(bind=db.engine)
- session = Session()
-
- try:
- # 查询所有自动生成的数据集,按时间排序
- datasets = session.query(Datasets).filter(
- Datasets.Dataset_type == data_type,
- Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
- ).order_by(Datasets.Uploaded_at).all()
-
- history_data = []
- for dataset in datasets:
- # 查找对应的自动训练模型
- model = session.query(Models).filter(
- Models.DatasetID == dataset.Dataset_ID,
- Models.Model_name.like(f'auto_trained_{data_type}_%')
- ).first()
- print(model)
- print(dataset)
-
- if model and model.Performance_score is not None:
- # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
- created_at = model.Created_at.isoformat() if model.Created_at else None
-
- history_data.append({
- 'dataset_id': dataset.Dataset_ID,
- 'row_count': dataset.Row_count,
- 'model_id': model.ModelID,
- 'model_name': model.Model_name,
- 'performance_score': float(model.Performance_score),
- 'timestamp': created_at
- })
-
- # 按时间戳排序
- history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
-
- # 构建返回数据,分离各个指标序列便于前端绘图
- response_data = {
- 'data_type': data_type,
- 'timestamps': [item['timestamp'] for item in history_data],
- 'row_counts': [item['row_count'] for item in history_data],
- 'performance_scores': [item['performance_score'] for item in history_data],
- 'model_details': history_data # 保留完整数据供前端使用
- }
- print(response_data)
-
- return jsonify(response_data), 200
-
- except Exception as e:
- logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
- return jsonify({'error': str(e)}), 500
-
- finally:
- session.close()
- @bp.route('/batch-delete-datasets', methods=['POST'])
- def batch_delete_datasets():
- """
- 批量删除数据集的API接口
-
- @body_param dataset_ids: 要删除的数据集ID列表
- @return: JSON响应
- """
- try:
- data = request.get_json()
- dataset_ids = data.get('dataset_ids', [])
-
- if not dataset_ids:
- return jsonify({'error': '未提供数据集ID列表'}), 400
-
- results = {
- 'success': [],
- 'failed': [],
- 'protected': [] # 被模型使用的数据集
- }
-
- for dataset_id in dataset_ids:
- try:
- # 调用单个删除接口
- response = delete_dataset_endpoint(dataset_id)
-
- # 解析响应
- if response[1] == 200:
- results['success'].append(dataset_id)
- elif response[1] == 400 and 'models' in response[0].json:
- # 数据集被模型保护
- results['protected'].append({
- 'id': dataset_id,
- 'models': response[0].json['models']
- })
- else:
- results['failed'].append({
- 'id': dataset_id,
- 'reason': response[0].json.get('error', '删除失败')
- })
-
- except Exception as e:
- logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
- results['failed'].append({
- 'id': dataset_id,
- 'reason': str(e)
- })
-
- # 构建响应消息
- message = f"成功删除 {len(results['success'])} 个数据集"
- if results['protected']:
- message += f", {len(results['protected'])} 个数据集被保护"
- if results['failed']:
- message += f", {len(results['failed'])} 个数据集删除失败"
-
- return jsonify({
- 'message': message,
- 'results': results
- }), 200
-
- except Exception as e:
- logger.error(f'批量删除数据集失败: {str(e)}')
- return jsonify({'error': str(e)}), 500
- @bp.route('/batch-delete-models', methods=['POST'])
- def batch_delete_models():
- """
- 批量删除模型的API接口
-
- @body_param model_ids: 要删除的模型ID列表
- @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
- @return: JSON响应
- """
- try:
- data = request.get_json()
- model_ids = data.get('model_ids', [])
- delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
-
- if not model_ids:
- return jsonify({'error': '未提供模型ID列表'}), 400
-
- results = {
- 'success': [],
- 'failed': [],
- 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
- }
-
- for model_id in model_ids:
- try:
- # 调用单个删除接口
- response = delete_model(model_id, delete_dataset=delete_datasets)
-
- # 解析响应
- if response[1] == 200:
- results['success'].append(model_id)
- # 如果删除了关联数据集,记录数据集ID
- if 'dataset_info' in response[0].json:
- results['datasets_deleted'].append(
- response[0].json['dataset_info']['dataset_id']
- )
- else:
- results['failed'].append({
- 'id': model_id,
- 'reason': response[0].json.get('error', '删除失败')
- })
-
- except Exception as e:
- logger.error(f'删除模型 {model_id} 失败: {str(e)}')
- results['failed'].append({
- 'id': model_id,
- 'reason': str(e)
- })
-
- # 构建响应消息
- message = f"成功删除 {len(results['success'])} 个模型"
- if results['datasets_deleted']:
- message += f", {len(results['datasets_deleted'])} 个关联数据集"
- if results['failed']:
- message += f", {len(results['failed'])} 个模型删除失败"
-
- return jsonify({
- 'message': message,
- 'results': results
- }), 200
-
- except Exception as e:
- logger.error(f'批量删除模型失败: {str(e)}')
- return jsonify({'error': str(e)}), 500
- @bp.route('/kriging_interpolation', methods=['POST'])
- def kriging_interpolation():
- try:
- data = request.get_json()
- required = ['file_name', 'emission_column', 'points']
- if not all(k in data for k in required):
- return jsonify({"error": "Missing parameters"}), 400
- # 添加坐标顺序验证
- points = data['points']
- if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
- return jsonify({"error": "Invalid points format"}), 400
- result = create_kriging(
- data['file_name'],
- data['emission_column'],
- data['points']
- )
- return jsonify(result)
- except Exception as e:
- return jsonify({"error": str(e)}), 500
- # 切换模型接口
- @bp.route('/switch-model', methods=['POST'])
- def switch_model():
- session = None
- try:
- data = request.get_json()
- model_id = data.get('model_id')
- model_name = data.get('model_name')
- # 创建 session
- Session = sessionmaker(bind=db.engine)
- session = Session()
- # 查找模型
- model = session.query(Models).filter_by(ModelID=model_id).first()
- if not model:
- return jsonify({'error': 'Model not found'}), 404
- # 更新模型状态(或其他切换逻辑)
- # 假设此处是更新模型的某些字段来进行切换
- model.status = 'active' # 假设有一个字段记录模型状态
- session.commit()
- # 记录切换日志
- logger.info(f'Model {model_name} (ID: {model_id}) switched successfully.')
- return jsonify({'success': True, 'message': f'Model {model_name} switched successfully!'}), 200
- except Exception as e:
- logger.error('Failed to switch model:', exc_info=True)
- return jsonify({'error': str(e)}), 400
- finally:
- if session:
- session.close()
- # 添加查看登录状态接口
- @bp.route('/getInfo', methods=['GET'])
- def getInfo_user():
- name = session.get("name")
- if name is not None:
- return jsonify(name=name)
- else:
- return jsonify(msg="错误")
- # 添加退出登录状态接口
- @bp.route('/logout', methods=['GET', 'POST'])
- def logout_user():
- try:
- session.clear()
- return jsonify({"msg": "退出成功"}), 200
- except Exception as e:
- logger.error(f"Error during logout process: {e}", exc_info=True)
- return jsonify({"msg": "退出失败"}), 500
- # 获取软件介绍信息的路由
- @bp.route('/software-intro/<int:id>', methods=['GET'])
- def get_software_intro(id):
- try:
- conn = get_db()
- cursor = conn.cursor()
- cursor.execute('SELECT title, intro FROM software_intro WHERE id = ?', (id,))
- result = cursor.fetchone()
- conn.close()
- if result:
- title, intro = result
- return jsonify({
- 'title': title,
- 'intro': intro
- })
- return jsonify({}), 404
- except sqlite3.Error as e:
- print(f"数据库错误: {e}")
- return jsonify({"error": f"数据库错误: {str(e)}"}), 500
- # 更新软件介绍信息的路由
- @bp.route('/software-intro/<int:id>', methods=['PUT'])
- def update_software_intro(id):
- try:
- data = request.get_json()
- title = data.get('title')
- intro = data.get('intro')
- conn = get_db()
- cursor = conn.cursor()
- cursor.execute('UPDATE software_intro SET title =?, intro =? WHERE id = ?', (title, intro, id))
- conn.commit()
- conn.close()
- return jsonify({'message': '软件介绍更新成功'})
- except sqlite3.Error as e:
- print(f"数据库错误: {e}")
- return jsonify({"error": f"数据库错误: {str(e)}"}), 500
- # 处理图片上传的路由
- @bp.route('/upload-image', methods=['POST'])
- def upload_image():
- file = request.files['image']
- if file:
- filename = str(uuid.uuid4()) + '.' + file.filename.rsplit('.', 1)[1].lower()
- file.save(os.path.join(bp.config['UPLOAD_FOLDER'], filename))
- imageUrl = f'http://127.0.0.1:5000/uploads/{filename}'
- return jsonify({'imageUrl': imageUrl})
- return jsonify({'error': '未找到图片文件'}), 400
- # 配置静态资源服务
- @bp.route('/uploads/<path:filename>')
- def serve_image(filename):
- uploads_folder = os.path.join(bp.root_path, 'uploads')
- return send_from_directory(uploads_folder, filename)
|