routes.py 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805
  1. import sqlite3
  2. import uuid
  3. from io import BytesIO
  4. from flask import Blueprint, request, jsonify, current_app, send_file, session
  5. from werkzeug.security import check_password_hash, generate_password_hash
  6. from werkzeug.utils import secure_filename, send_from_directory
  7. from .model import predict, train_and_save_model, calculate_model_score
  8. import pandas as pd
  9. from . import db # 从 app 包导入 db 实例
  10. from sqlalchemy.engine.reflection import Inspector
  11. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  12. import os
  13. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  14. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  15. predict_to_Q, Q_to_t_ha, create_kriging
  16. from sqlalchemy.orm import sessionmaker
  17. import logging
  18. from sqlalchemy import text, select, MetaData, Table, func
  19. from .tasks import train_model_task
  20. from datetime import datetime
  21. # 配置日志
  22. logging.basicConfig(level=logging.DEBUG)
  23. logger = logging.getLogger(__name__)
  24. # 创建蓝图 (Blueprint),用于分离路由
  25. bp = Blueprint('routes', __name__)
  26. # 密码加密
  27. def hash_password(password):
  28. return generate_password_hash(password)
  29. def get_db():
  30. """ 获取数据库连接 """
  31. return sqlite3.connect(current_app.config['DATABASE'])
  32. # 添加一个新的辅助函数来检查数据集大小并触发训练
  33. def check_and_trigger_training(session, dataset_type, dataset_df):
  34. """
  35. 检查当前数据集大小是否跨越新的阈值点并触发训练
  36. Args:
  37. session: 数据库会话
  38. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  39. dataset_df: 数据集 DataFrame
  40. Returns:
  41. tuple: (是否触发训练, 任务ID)
  42. """
  43. try:
  44. # 根据数据集类型选择表
  45. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  46. # 获取当前记录数
  47. current_count = session.query(func.count()).select_from(table).scalar()
  48. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  49. new_records = len(dataset_df) # 需要从上层函数传入
  50. # 计算新增数据前的记录数
  51. previous_count = current_count - new_records
  52. # 设置阈值
  53. THRESHOLD = current_app.config['THRESHOLD']
  54. # 计算上一个阈值点(基于新增前的数据量)
  55. last_threshold = previous_count // THRESHOLD * THRESHOLD
  56. # 计算当前所在阈值点
  57. current_threshold = current_count // THRESHOLD * THRESHOLD
  58. # 检查是否跨越了新的阈值点
  59. if current_threshold > last_threshold and current_count >= THRESHOLD:
  60. # 触发异步训练任务
  61. task = train_model_task.delay(
  62. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  63. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  64. model_description=f'Auto trained model at {current_threshold} records threshold',
  65. data_type=dataset_type
  66. )
  67. return True, task.id
  68. return False, None
  69. except Exception as e:
  70. logging.error(f"检查并触发训练失败: {str(e)}")
  71. return False, None
  72. @bp.route('/upload-dataset', methods=['POST'])
  73. def upload_dataset():
  74. # 创建 session
  75. Session = sessionmaker(bind=db.engine)
  76. session = Session()
  77. try:
  78. if 'file' not in request.files:
  79. return jsonify({'error': 'No file part'}), 400
  80. file = request.files['file']
  81. if file.filename == '' or not allowed_file(file.filename):
  82. return jsonify({'error': 'No selected file or invalid file type'}), 400
  83. dataset_name = request.form.get('dataset_name')
  84. dataset_description = request.form.get('dataset_description', 'No description provided')
  85. dataset_type = request.form.get('dataset_type')
  86. if not dataset_type:
  87. return jsonify({'error': 'Dataset type is required'}), 400
  88. new_dataset = Datasets(
  89. Dataset_name=dataset_name,
  90. Dataset_description=dataset_description,
  91. Row_count=0,
  92. Status='Datasets_upgraded',
  93. Dataset_type=dataset_type,
  94. Uploaded_at=datetime.now()
  95. )
  96. session.add(new_dataset)
  97. session.commit()
  98. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  99. upload_folder = current_app.config['UPLOAD_FOLDER']
  100. file_path = os.path.join(upload_folder, unique_filename)
  101. file.save(file_path)
  102. dataset_df = pd.read_excel(file_path)
  103. new_dataset.Row_count = len(dataset_df)
  104. new_dataset.Status = 'excel_file_saved success'
  105. session.commit()
  106. # 处理列名
  107. dataset_df = clean_column_names(dataset_df)
  108. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  109. column_types = infer_column_types(dataset_df)
  110. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  111. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  112. # 根据 dataset_type 决定插入到哪个已有表
  113. if dataset_type == 'reduce':
  114. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  115. elif dataset_type == 'reflux':
  116. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  117. session.commit()
  118. # 在完成数据插入后,检查是否需要触发训练
  119. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  120. response_data = {
  121. 'message': f'Dataset {dataset_name} uploaded successfully!',
  122. 'dataset_id': new_dataset.Dataset_ID,
  123. 'filename': unique_filename,
  124. 'training_triggered': training_triggered
  125. }
  126. if training_triggered:
  127. response_data['task_id'] = task_id
  128. response_data['message'] += ' Auto-training has been triggered.'
  129. return jsonify(response_data), 201
  130. except Exception as e:
  131. session.rollback()
  132. logging.error('Failed to process the dataset upload:', exc_info=True)
  133. return jsonify({'error': str(e)}), 500
  134. finally:
  135. # 确保 session 总是被关闭
  136. if session:
  137. session.close()
  138. @bp.route('/train-and-save-model', methods=['POST'])
  139. def train_and_save_model_endpoint():
  140. # 创建 sessionmaker 实例
  141. Session = sessionmaker(bind=db.engine)
  142. session = Session()
  143. data = request.get_json()
  144. # 从请求中解析参数
  145. model_type = data.get('model_type')
  146. model_name = data.get('model_name')
  147. model_description = data.get('model_description')
  148. data_type = data.get('data_type')
  149. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  150. try:
  151. # 调用训练和保存模型的函数
  152. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  153. model_id = result[1] if result else None
  154. # 计算模型评分
  155. if model_id:
  156. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  157. if model_info:
  158. score = calculate_model_score(model_info)
  159. # 更新模型评分
  160. model_info.Performance_score = score
  161. session.commit()
  162. result = {'model_id': model_id, 'model_score': score}
  163. # 返回成功响应
  164. return jsonify({
  165. 'message': 'Model trained and saved successfully',
  166. 'result': result
  167. }), 200
  168. except Exception as e:
  169. session.rollback()
  170. logging.error('Failed to process the model training:', exc_info=True)
  171. return jsonify({
  172. 'error': 'Failed to train and save model',
  173. 'message': str(e)
  174. }), 500
  175. finally:
  176. session.close()
  177. @bp.route('/predict', methods=['POST'])
  178. def predict_route():
  179. # 创建 sessionmaker 实例
  180. Session = sessionmaker(bind=db.engine)
  181. session = Session()
  182. try:
  183. data = request.get_json()
  184. model_id = data.get('model_id') # 提取模型名称
  185. parameters = data.get('parameters', {}) # 提取所有变量
  186. # 根据model_id获取模型Data_type
  187. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  188. if not model_info:
  189. return jsonify({'error': 'Model not found'}), 404
  190. data_type = model_info.Data_type
  191. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  192. # 如果为reduce,则不需要传入target_ph
  193. if data_type == 'reduce':
  194. # 获取传入的init_ph、target_ph参数
  195. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  196. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  197. # 从输入数据中删除'target_pH'列
  198. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  199. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  200. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  201. if data_type == 'reduce':
  202. predictions = predictions[0]
  203. # 将预测结果转换为Q
  204. Q = predict_to_Q(predictions, init_ph, target_ph)
  205. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  206. print(predictions)
  207. return jsonify({'result': predictions}), 200
  208. except Exception as e:
  209. logging.error('Failed to predict:', exc_info=True)
  210. return jsonify({'error': str(e)}), 400
  211. # 为指定模型计算评分Performance_score,需要提供model_id
  212. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  213. def score_model(model_id):
  214. # 创建 sessionmaker 实例
  215. Session = sessionmaker(bind=db.engine)
  216. session = Session()
  217. try:
  218. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  219. if not model_info:
  220. return jsonify({'error': 'Model not found'}), 404
  221. # 计算模型评分
  222. score = calculate_model_score(model_info)
  223. # 更新模型记录中的评分
  224. model_info.Performance_score = score
  225. session.commit()
  226. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  227. except Exception as e:
  228. logging.error('Failed to process the dataset upload:', exc_info=True)
  229. return jsonify({'error': str(e)}), 400
  230. finally:
  231. session.close()
  232. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  233. def delete_dataset_endpoint(dataset_id):
  234. """
  235. 删除数据集的API接口
  236. @param dataset_id: 要删除的数据集ID
  237. @return: JSON响应
  238. """
  239. # 创建 sessionmaker 实例
  240. Session = sessionmaker(bind=db.engine)
  241. session = Session()
  242. try:
  243. # 查询数据集
  244. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  245. if not dataset:
  246. return jsonify({'error': '未找到数据集'}), 404
  247. # 检查是否有模型使用了该数据集
  248. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  249. if models_using_dataset:
  250. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  251. return jsonify({
  252. 'error': '无法删除数据集,因为以下模型正在使用它',
  253. 'models': models_info
  254. }), 400
  255. # 删除Excel文件
  256. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  257. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  258. if os.path.exists(file_path):
  259. try:
  260. os.remove(file_path)
  261. except OSError as e:
  262. logger.error(f'删除文件失败: {str(e)}')
  263. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  264. # 删除数据表
  265. table_name = f"dataset_{dataset.Dataset_ID}"
  266. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  267. # 删除数据集记录
  268. session.delete(dataset)
  269. session.commit()
  270. return jsonify({
  271. 'message': '数据集删除成功',
  272. 'deleted_files': [filename]
  273. }), 200
  274. except Exception as e:
  275. session.rollback()
  276. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  277. return jsonify({'error': str(e)}), 500
  278. finally:
  279. session.close()
  280. @bp.route('/tables', methods=['GET'])
  281. def list_tables():
  282. engine = db.engine # 使用 db 实例的 engine
  283. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  284. table_names = inspector.get_table_names() # 获取所有表名
  285. return jsonify(table_names) # 以 JSON 形式返回表名列表
  286. @bp.route('/models/<int:model_id>', methods=['GET'])
  287. def get_model(model_id):
  288. """
  289. 获取单个模型信息的API接口
  290. @param model_id: 模型ID
  291. @return: JSON响应
  292. """
  293. Session = sessionmaker(bind=db.engine)
  294. session = Session()
  295. try:
  296. model = session.query(Models).filter_by(ModelID=model_id).first()
  297. if model:
  298. return jsonify({
  299. 'ModelID': model.ModelID,
  300. 'Model_name': model.Model_name,
  301. 'Model_type': model.Model_type,
  302. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  303. 'Description': model.Description,
  304. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  305. 'Data_type': model.Data_type
  306. })
  307. else:
  308. return jsonify({'message': '未找到模型'}), 404
  309. except Exception as e:
  310. logger.error(f'获取模型信息失败: {str(e)}')
  311. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  312. finally:
  313. session.close()
  314. # 显示切换模型
  315. @bp.route('/models', methods=['GET'])
  316. def get_models():
  317. session = None
  318. try:
  319. # 创建 session
  320. Session = sessionmaker(bind=db.engine)
  321. session = Session()
  322. # 查询所有模型
  323. models = session.query(Models).all()
  324. logger.debug(f"Models found: {models}") # 打印查询的模型数据
  325. if not models:
  326. return jsonify({'message': 'No models found'}), 404
  327. # 将模型数据转换为字典列表
  328. models_list = [
  329. {
  330. 'ModelID': model.ModelID,
  331. 'ModelName': model.Model_name,
  332. 'ModelType': model.Model_type,
  333. 'CreatedAt': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  334. 'Description': model.Description,
  335. 'DatasetID': model.DatasetID,
  336. 'ModelFilePath': model.ModelFilePath,
  337. 'DataType': model.Data_type,
  338. 'PerformanceScore': model.Performance_score
  339. }
  340. for model in models
  341. ]
  342. return jsonify(models_list), 200
  343. except Exception as e:
  344. return jsonify({'error': str(e)}), 400
  345. finally:
  346. if session:
  347. session.close()
  348. @bp.route('/model-parameters', methods=['GET'])
  349. def get_all_model_parameters():
  350. """
  351. 获取所有模型参数的API接口
  352. @return: JSON响应
  353. """
  354. Session = sessionmaker(bind=db.engine)
  355. session = Session()
  356. try:
  357. parameters = session.query(ModelParameters).all()
  358. if parameters:
  359. result = [
  360. {
  361. 'ParamID': param.ParamID,
  362. 'ModelID': param.ModelID,
  363. 'ParamName': param.ParamName,
  364. 'ParamValue': param.ParamValue
  365. }
  366. for param in parameters
  367. ]
  368. return jsonify(result)
  369. else:
  370. return jsonify({'message': '未找到任何参数'}), 404
  371. except Exception as e:
  372. logger.error(f'获取所有模型参数失败: {str(e)}')
  373. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  374. finally:
  375. session.close()
  376. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  377. def get_model_parameters(model_id):
  378. try:
  379. model = Models.query.filter_by(ModelID=model_id).first()
  380. if model:
  381. # 获取该模型的所有参数
  382. parameters = [
  383. {
  384. 'ParamID': param.ParamID,
  385. 'ParamName': param.ParamName,
  386. 'ParamValue': param.ParamValue
  387. }
  388. for param in model.parameters
  389. ]
  390. # 返回模型参数信息
  391. return jsonify({
  392. 'ModelID': model.ModelID,
  393. 'ModelName': model.ModelName,
  394. 'ModelType': model.ModelType,
  395. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  396. 'Description': model.Description,
  397. 'Parameters': parameters
  398. })
  399. else:
  400. return jsonify({'message': 'Model not found'}), 404
  401. except Exception as e:
  402. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  403. # 定义添加数据库记录的 API 接口
  404. @bp.route('/add_item', methods=['POST'])
  405. def add_item():
  406. """
  407. 接收 JSON 格式的请求体,包含表名和要插入的数据。
  408. 尝试将数据插入到指定的表中,并进行字段查重。
  409. :return:
  410. """
  411. try:
  412. # 确保请求体是 JSON 格式
  413. data = request.get_json()
  414. if not data:
  415. raise ValueError("No JSON data provided")
  416. table_name = data.get('table')
  417. item_data = data.get('item')
  418. if not table_name or not item_data:
  419. return jsonify({'error': 'Missing table name or item data'}), 400
  420. # 定义各个表的字段查重规则
  421. duplicate_check_rules = {
  422. 'users': ['email', 'username'],
  423. 'products': ['product_code'],
  424. 'current_reduce': ['Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
  425. 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
  426. # 其他表和规则
  427. }
  428. # 获取该表的查重字段
  429. duplicate_columns = duplicate_check_rules.get(table_name)
  430. if not duplicate_columns:
  431. return jsonify({'error': 'No duplicate check rule for this table'}), 400
  432. # 动态构建查询条件,逐一检查是否有重复数据
  433. condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
  434. duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
  435. result = db.session.execute(text(duplicate_query), item_data).fetchone()
  436. if result:
  437. return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
  438. # 动态构建 SQL 语句,进行插入操作
  439. columns = ', '.join(item_data.keys())
  440. placeholders = ', '.join([f":{key}" for key in item_data.keys()])
  441. sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
  442. # 直接执行插入操作,无需显式的事务管理
  443. db.session.execute(text(sql), item_data)
  444. # 提交事务
  445. db.session.commit()
  446. # 返回成功响应
  447. return jsonify({'success': True, 'message': 'Item added successfully'}), 201
  448. except ValueError as e:
  449. return jsonify({'error': str(e)}), 400
  450. except KeyError as e:
  451. return jsonify({'error': f'Missing data field: {e}'}), 400
  452. except sqlite3.IntegrityError as e:
  453. return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
  454. except sqlite3.Error as e:
  455. return jsonify({'error': '数据库错误', 'details': str(e)}), 500
  456. @bp.route('/delete_item', methods=['POST'])
  457. def delete_item():
  458. """
  459. 删除数据库记录的 API 接口
  460. """
  461. data = request.get_json()
  462. table_name = data.get('table')
  463. condition = data.get('condition')
  464. # 检查表名和条件是否提供
  465. if not table_name or not condition:
  466. return jsonify({
  467. "success": False,
  468. "message": "缺少表名或条件参数"
  469. }), 400
  470. # 尝试从条件字符串中解析键和值
  471. try:
  472. key, value = condition.split('=')
  473. key = key.strip() # 去除多余的空格
  474. value = value.strip().strip("'\"") # 去除多余的空格和引号
  475. except ValueError:
  476. return jsonify({
  477. "success": False,
  478. "message": "条件格式错误,应为 'key=value'"
  479. }), 400
  480. # 准备 SQL 删除语句
  481. sql = f"DELETE FROM {table_name} WHERE {key} = :value"
  482. try:
  483. # 使用 SQLAlchemy 执行删除
  484. with db.session.begin():
  485. result = db.session.execute(text(sql), {"value": value})
  486. # 检查是否有记录被删除
  487. if result.rowcount == 0:
  488. return jsonify({
  489. "success": False,
  490. "message": "未找到符合条件的记录"
  491. }), 404
  492. return jsonify({
  493. "success": True,
  494. "message": "记录删除成功"
  495. }), 200
  496. except Exception as e:
  497. return jsonify({
  498. "success": False,
  499. "message": f"删除失败: {e}"
  500. }), 500
  501. # 定义修改数据库记录的 API 接口
  502. @bp.route('/update_item', methods=['PUT'])
  503. def update_record():
  504. """
  505. 接收 JSON 格式的请求体,包含表名和更新的数据。
  506. 尝试更新指定的记录。
  507. """
  508. data = request.get_json()
  509. # 检查必要的数据是否提供
  510. if not data or 'table' not in data or 'item' not in data:
  511. return jsonify({
  512. "success": False,
  513. "message": "请求数据不完整"
  514. }), 400
  515. table_name = data['table']
  516. item = data['item']
  517. # 假设 item 的第一个键是 ID
  518. id_key = next(iter(item.keys())) # 获取第一个键
  519. record_id = item.get(id_key)
  520. if not record_id:
  521. return jsonify({
  522. "success": False,
  523. "message": "缺少记录 ID"
  524. }), 400
  525. # 获取更新的字段和值
  526. updates = {key: value for key, value in item.items() if key != id_key}
  527. if not updates:
  528. return jsonify({
  529. "success": False,
  530. "message": "没有提供需要更新的字段"
  531. }), 400
  532. # 动态构建 SQL
  533. set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
  534. sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
  535. # 添加 ID 到参数
  536. updates['id_value'] = record_id
  537. try:
  538. # 使用 SQLAlchemy 执行更新
  539. with db.session.begin():
  540. result = db.session.execute(text(sql), updates)
  541. # 检查是否有更新的记录
  542. if result.rowcount == 0:
  543. return jsonify({
  544. "success": False,
  545. "message": "未找到要更新的记录"
  546. }), 404
  547. return jsonify({
  548. "success": True,
  549. "message": "数据更新成功"
  550. }), 200
  551. except Exception as e:
  552. # 捕获所有异常并返回
  553. return jsonify({
  554. "success": False,
  555. "message": f"更新失败: {str(e)}"
  556. }), 500
  557. # 定义查询数据库记录的 API 接口
  558. @bp.route('/search/record', methods=['GET'])
  559. def sql_search():
  560. """
  561. 接收 JSON 格式的请求体,包含表名和要查询的 ID。
  562. 尝试查询指定 ID 的记录并返回结果。
  563. :return:
  564. """
  565. try:
  566. data = request.get_json()
  567. # 表名
  568. sql_table = data['table']
  569. # 要搜索的 ID
  570. Id = data['id']
  571. # 连接到数据库
  572. cur = db.cursor()
  573. # 构造查询语句
  574. sql = f"SELECT * FROM {sql_table} WHERE id = ?"
  575. # 执行查询
  576. cur.execute(sql, (Id,))
  577. # 获取查询结果
  578. rows = cur.fetchall()
  579. column_names = [desc[0] for desc in cur.description]
  580. # 检查是否有结果
  581. if not rows:
  582. return jsonify({'error': '未查找到对应数据。'}), 400
  583. # 构造响应数据
  584. results = []
  585. for row in rows:
  586. result = {column_names[i]: row[i] for i in range(len(row))}
  587. results.append(result)
  588. # 关闭游标和数据库连接
  589. cur.close()
  590. db.close()
  591. # 返回 JSON 响应
  592. return jsonify(results), 200
  593. except sqlite3.Error as e:
  594. # 如果发生数据库错误,返回错误信息
  595. return jsonify({'error': str(e)}), 400
  596. except KeyError as e:
  597. # 如果请求数据中缺少必要的键,返回错误信息
  598. return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
  599. # 定义提供数据库列表,用于展示表格的 API 接口
  600. @bp.route('/table', methods=['POST'])
  601. def get_table():
  602. data = request.get_json()
  603. table_name = data.get('table')
  604. if not table_name:
  605. return jsonify({'error': '需要表名'}), 400
  606. try:
  607. # 创建 sessionmaker 实例
  608. Session = sessionmaker(bind=db.engine)
  609. session = Session()
  610. # 动态获取表的元数据
  611. metadata = MetaData()
  612. table = Table(table_name, metadata, autoload_with=db.engine)
  613. # 从数据库中查询所有记录
  614. query = select(table)
  615. result = session.execute(query).fetchall()
  616. # 将结果转换为列表字典形式
  617. rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
  618. # 获取列名
  619. headers = [column.name for column in table.columns]
  620. return jsonify(rows=rows, headers=headers), 200
  621. except Exception as e:
  622. return jsonify({'error': str(e)}), 400
  623. finally:
  624. # 关闭 session
  625. session.close()
  626. @bp.route('/train-model-async', methods=['POST'])
  627. def train_model_async():
  628. """
  629. 异步训练模型的API接口
  630. """
  631. try:
  632. data = request.get_json()
  633. # 从请求中获取参数
  634. model_type = data.get('model_type')
  635. model_name = data.get('model_name')
  636. model_description = data.get('model_description')
  637. data_type = data.get('data_type')
  638. dataset_id = data.get('dataset_id', None)
  639. # 验证必要参数
  640. if not all([model_type, model_name, data_type]):
  641. return jsonify({
  642. 'error': 'Missing required parameters'
  643. }), 400
  644. # 如果提供了dataset_id,验证数据集是否存在
  645. if dataset_id:
  646. Session = sessionmaker(bind=db.engine)
  647. session = Session()
  648. try:
  649. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  650. if not dataset:
  651. return jsonify({
  652. 'error': f'Dataset with ID {dataset_id} not found'
  653. }), 404
  654. finally:
  655. session.close()
  656. # 启动异步任务
  657. task = train_model_task.delay(
  658. model_type=model_type,
  659. model_name=model_name,
  660. model_description=model_description,
  661. data_type=data_type,
  662. dataset_id=dataset_id
  663. )
  664. # 返回任务ID
  665. return jsonify({
  666. 'task_id': task.id,
  667. 'message': 'Model training started'
  668. }), 202
  669. except Exception as e:
  670. logging.error('Failed to start async training task:', exc_info=True)
  671. return jsonify({
  672. 'error': str(e)
  673. }), 500
  674. @bp.route('/task-status/<task_id>', methods=['GET'])
  675. def get_task_status(task_id):
  676. """
  677. 获取异步任务状态的API接口
  678. """
  679. try:
  680. task = train_model_task.AsyncResult(task_id)
  681. if task.state == 'PENDING':
  682. response = {
  683. 'state': task.state,
  684. 'status': 'Task is waiting for execution'
  685. }
  686. elif task.state == 'FAILURE':
  687. response = {
  688. 'state': task.state,
  689. 'status': 'Task failed',
  690. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  691. }
  692. elif task.state == 'SUCCESS':
  693. response = {
  694. 'state': task.state,
  695. 'status': 'Task completed successfully',
  696. 'result': task.get()
  697. }
  698. else:
  699. response = {
  700. 'state': task.state,
  701. 'status': 'Task is in progress'
  702. }
  703. return jsonify(response), 200
  704. except Exception as e:
  705. return jsonify({
  706. 'error': str(e)
  707. }), 500
  708. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  709. def delete_model_route(model_id):
  710. # 将URL参数转换为布尔值
  711. delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
  712. # 调用原始函数
  713. return delete_model(model_id, delete_dataset=delete_dataset_param)
  714. def delete_model(model_id, delete_dataset=False):
  715. """
  716. 删除指定模型的API接口
  717. @param model_id: 要删除的模型ID
  718. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  719. @return: JSON响应
  720. """
  721. Session = sessionmaker(bind=db.engine)
  722. session = Session()
  723. try:
  724. # 查询模型信息
  725. model = session.query(Models).filter_by(ModelID=model_id).first()
  726. if not model:
  727. return jsonify({'error': '未找到指定模型'}), 404
  728. dataset_id = model.DatasetID
  729. # 1. 先删除模型记录
  730. session.delete(model)
  731. session.commit()
  732. # 2. 删除模型文件
  733. model_file = f"rf_model_{model_id}.pkl"
  734. model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
  735. if os.path.exists(model_path):
  736. try:
  737. os.remove(model_path)
  738. except OSError as e:
  739. # 如果删除文件失败,回滚数据库操作
  740. session.rollback()
  741. logger.error(f'删除模型文件失败: {str(e)}')
  742. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  743. # 3. 如果需要删除关联的数据集
  744. if delete_dataset and dataset_id:
  745. try:
  746. dataset_response = delete_dataset_endpoint(dataset_id)
  747. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  748. # 如果删除数据集失败,回滚之前的操作
  749. session.rollback()
  750. return jsonify({
  751. 'error': '删除关联数据集失败',
  752. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  753. }), 500
  754. except Exception as e:
  755. session.rollback()
  756. logger.error(f'删除关联数据集失败: {str(e)}')
  757. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  758. response_data = {
  759. 'message': '模型删除成功',
  760. 'deleted_files': [model_file]
  761. }
  762. if delete_dataset:
  763. response_data['dataset_info'] = {
  764. 'dataset_id': dataset_id,
  765. 'message': '关联数据集已删除'
  766. }
  767. return jsonify(response_data), 200
  768. except Exception as e:
  769. session.rollback()
  770. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  771. return jsonify({'error': str(e)}), 500
  772. finally:
  773. session.close()
  774. # 添加一个新的API端点来清空指定数据集
  775. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  776. def clear_dataset(data_type):
  777. """
  778. 清空指定类型的数据集并递增计数
  779. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  780. @return: JSON响应
  781. """
  782. # 创建 sessionmaker 实例
  783. Session = sessionmaker(bind=db.engine)
  784. session = Session()
  785. try:
  786. # 根据数据集类型选择表
  787. if data_type == 'reduce':
  788. table = CurrentReduce
  789. table_name = 'current_reduce'
  790. elif data_type == 'reflux':
  791. table = CurrentReflux
  792. table_name = 'current_reflux'
  793. else:
  794. return jsonify({'error': '无效的数据集类型'}), 400
  795. # 清空表内容
  796. session.query(table).delete()
  797. # 重置自增主键计数器
  798. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  799. session.commit()
  800. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  801. except Exception as e:
  802. session.rollback()
  803. return jsonify({'error': str(e)}), 500
  804. finally:
  805. session.close()
  806. # 修改了一下登录·接口
  807. @bp.route('/login', methods=['POST'])
  808. def login_user():
  809. data = request.get_json()
  810. logger.debug(f"Received login data: {data}") # 增加调试日志
  811. name = data.get('name')
  812. password = data.get('password')
  813. logger.info(f"Login request received for user: {name}")
  814. if not isinstance(name, str) or not isinstance(password, str):
  815. logger.warning("Username and password must be strings")
  816. return jsonify({"success": False, "message": "用户名和密码必须为字符串"}), 400
  817. if not name or not password:
  818. logger.warning("Username and password cannot be empty")
  819. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  820. query = "SELECT id, name, password FROM users WHERE name = ?"
  821. try:
  822. with get_db() as conn:
  823. user = conn.execute(query, (name,)).fetchone()
  824. if not user:
  825. logger.warning(f"User '{name}' does not exist")
  826. return jsonify({"success": False, "message": "用户名不存在"}), 400
  827. stored_password = user[2] # 假设 'password' 是第三个字段
  828. user_id = user[0] # 假设 'id' 是第一个字段
  829. if check_password_hash(stored_password, password):
  830. session['name'] = name
  831. logger.info(f"User '{name}' logged in successfully.")
  832. return jsonify({
  833. "success": True,
  834. "message": "登录成功",
  835. "userId": user_id,
  836. "name": name
  837. })
  838. else:
  839. logger.warning(f"Incorrect password for user '{name}'")
  840. return jsonify({"success": False, "message": "用户名或密码错误"}), 400
  841. except sqlite3.DatabaseError as db_err:
  842. logger.error(f"Database error during login process: {db_err}", exc_info=True)
  843. return jsonify({"success": False, "message": "数据库错误"}), 500
  844. except Exception as e:
  845. logger.error(f"Unexpected error during login process: {e}", exc_info=True)
  846. return jsonify({"success": False, "message": "登录失败"}), 500
  847. # 更新用户信息接口
  848. @bp.route('/update_user', methods=['POST'])
  849. def update_user():
  850. # 获取前端传来的数据
  851. data = request.get_json()
  852. # 打印收到的请求数据
  853. current_app.logger.info(f"Received data: {data}")
  854. user_id = data.get('userId') # 用户ID
  855. name = data.get('name') # 用户名
  856. old_password = data.get('oldPassword') # 旧密码
  857. new_password = data.get('newPassword') # 新密码
  858. logger.info(f"Update request received: user_id={user_id}, name={name}")
  859. # 校验传入的用户名和密码是否为空
  860. if not name or not old_password:
  861. logger.warning("用户名和旧密码不能为空")
  862. return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
  863. # 新密码和旧密码不能相同
  864. if new_password and old_password == new_password:
  865. logger.warning(f"新密码与旧密码相同:{name}")
  866. return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
  867. try:
  868. # 查询数据库验证用户ID
  869. query = "SELECT * FROM users WHERE id = :user_id"
  870. conn = get_db()
  871. user = conn.execute(query, {"user_id": user_id}).fetchone()
  872. if not user:
  873. logger.warning(f"用户ID '{user_id}' 不存在")
  874. return jsonify({"success": False, "message": "用户不存在"}), 400
  875. # 获取数据库中存储的密码(假设密码是哈希存储的)
  876. stored_password = user[2] # 假设密码存储在数据库的第三列
  877. # 校验旧密码是否正确
  878. if not check_password_hash(stored_password, old_password):
  879. logger.warning(f"旧密码错误:{name}")
  880. return jsonify({"success": False, "message": "旧密码错误"}), 400
  881. # 如果新密码非空,则更新新密码
  882. if new_password:
  883. hashed_new_password = hash_password(new_password)
  884. update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
  885. conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
  886. conn.commit()
  887. logger.info(f"User ID '{user_id}' password updated successfully.")
  888. # 如果用户名发生更改,则更新用户名
  889. if name != user[1]:
  890. update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
  891. conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
  892. conn.commit()
  893. logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
  894. return jsonify({"success": True, "message": "用户信息更新成功"})
  895. except Exception as e:
  896. # 记录错误日志并返回错误信息
  897. logger.error(f"Error updating user: {e}", exc_info=True)
  898. return jsonify({"success": False, "message": "更新失败"}), 500
  899. # 注册用户
  900. @bp.route('/register', methods=['POST'])
  901. def register_user():
  902. # 获取前端传来的数据
  903. data = request.get_json()
  904. name = data.get('name') # 用户名
  905. password = data.get('password') # 密码
  906. logger.info(f"Register request received: name={name}")
  907. # 检查用户名和密码是否为空
  908. if not name or not password:
  909. logger.warning("用户名和密码不能为空")
  910. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  911. # 动态获取数据库表的列名
  912. columns = get_column_names('users')
  913. logger.info(f"Database columns for 'users' table: {columns}")
  914. # 检查前端传来的数据是否包含数据库表中所有的必填字段
  915. for column in ['name', 'password']:
  916. if column not in columns:
  917. logger.error(f"缺少必填字段:{column}")
  918. return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
  919. # 对密码进行哈希处理
  920. hashed_password = hash_password(password)
  921. logger.info(f"Password hashed for user: {name}")
  922. # 插入到数据库
  923. try:
  924. # 检查用户是否已经存在
  925. query = "SELECT * FROM users WHERE name = :name"
  926. conn = get_db()
  927. user = conn.execute(query, {"name": name}).fetchone()
  928. if user:
  929. logger.warning(f"用户名 '{name}' 已存在")
  930. return jsonify({"success": False, "message": "用户名已存在"}), 400
  931. # 向数据库插入数据
  932. query = "INSERT INTO users (name, password) VALUES (:name, :password)"
  933. conn.execute(query, {"name": name, "password": hashed_password})
  934. conn.commit()
  935. logger.info(f"User '{name}' registered successfully.")
  936. return jsonify({"success": True, "message": "注册成功"})
  937. except Exception as e:
  938. # 记录错误日志并返回错误信息
  939. logger.error(f"Error registering user: {e}", exc_info=True)
  940. return jsonify({"success": False, "message": "注册失败"}), 500
  941. def get_column_names(table_name):
  942. """
  943. 动态获取数据库表的列名。
  944. """
  945. try:
  946. conn = get_db()
  947. query = f"PRAGMA table_info({table_name});"
  948. result = conn.execute(query).fetchall()
  949. conn.close()
  950. return [row[1] for row in result] # 第二列是列名
  951. except Exception as e:
  952. logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
  953. return []
  954. # 导出数据
  955. @bp.route('/export_data', methods=['GET'])
  956. def export_data():
  957. table_name = request.args.get('table')
  958. file_format = request.args.get('format', 'excel').lower()
  959. if not table_name:
  960. return jsonify({'error': '缺少表名参数'}), 400
  961. if not table_name.isidentifier():
  962. return jsonify({'error': '无效的表名'}), 400
  963. try:
  964. conn = get_db()
  965. query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
  966. table_exists = conn.execute(query, (table_name,)).fetchone()
  967. if not table_exists:
  968. return jsonify({'error': f"表 {table_name} 不存在"}), 404
  969. query = f"SELECT * FROM {table_name};"
  970. df = pd.read_sql(query, conn)
  971. output = BytesIO()
  972. if file_format == 'csv':
  973. df.to_csv(output, index=False, encoding='utf-8')
  974. output.seek(0)
  975. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
  976. elif file_format == 'excel':
  977. df.to_excel(output, index=False, engine='openpyxl')
  978. output.seek(0)
  979. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
  980. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  981. else:
  982. return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
  983. except Exception as e:
  984. logger.error(f"Error in export_data: {e}", exc_info=True)
  985. return jsonify({'error': str(e)}), 500
  986. # 导入数据接口
  987. @bp.route('/import_data', methods=['POST'])
  988. def import_data():
  989. logger.debug("Import data endpoint accessed.")
  990. if 'file' not in request.files:
  991. logger.error("No file in request.")
  992. return jsonify({'success': False, 'message': '文件缺失'}), 400
  993. file = request.files['file']
  994. table_name = request.form.get('table')
  995. if not table_name:
  996. logger.error("Missing table name parameter.")
  997. return jsonify({'success': False, 'message': '缺少表名参数'}), 400
  998. if file.filename == '':
  999. logger.error("No file selected.")
  1000. return jsonify({'success': False, 'message': '未选择文件'}), 400
  1001. try:
  1002. # 保存文件到临时路径
  1003. temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
  1004. file.save(temp_path)
  1005. logger.debug(f"File saved to temporary path: {temp_path}")
  1006. # 根据文件类型读取文件
  1007. if file.filename.endswith('.xlsx'):
  1008. df = pd.read_excel(temp_path)
  1009. elif file.filename.endswith('.csv'):
  1010. df = pd.read_csv(temp_path)
  1011. else:
  1012. logger.error("Unsupported file format.")
  1013. return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
  1014. # 获取数据库列名
  1015. db_columns = get_column_names(table_name)
  1016. if 'id' in db_columns:
  1017. db_columns.remove('id') # 假设 id 列是自增的,不需要处理
  1018. if not set(db_columns).issubset(set(df.columns)):
  1019. logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
  1020. return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
  1021. # 清洗数据并删除空值行
  1022. df_cleaned = df[db_columns].dropna()
  1023. # 统一数据类型,避免 int 和 float 合并问题
  1024. df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
  1025. # 获取现有的数据
  1026. conn = get_db()
  1027. with conn:
  1028. existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
  1029. # 查找重复数据
  1030. duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
  1031. # 如果有重复数据,删除它们
  1032. df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
  1033. logger.warning(f"Duplicate data detected and removed: {duplicates}")
  1034. # 获取导入前后的数据量
  1035. total_data = len(df_cleaned) + len(duplicates)
  1036. new_data = len(df_cleaned)
  1037. duplicate_data = len(duplicates)
  1038. # 导入不重复的数据
  1039. df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
  1040. logger.debug(f"Imported {new_data} new records into the database.")
  1041. # 删除临时文件
  1042. os.remove(temp_path)
  1043. logger.debug(f"Temporary file removed: {temp_path}")
  1044. # 返回结果
  1045. return jsonify({
  1046. 'success': True,
  1047. 'message': '数据导入成功',
  1048. 'total_data': total_data,
  1049. 'new_data': new_data,
  1050. 'duplicate_data': duplicate_data
  1051. }), 200
  1052. except Exception as e:
  1053. logger.error(f"Import failed: {e}", exc_info=True)
  1054. return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
  1055. # 模板下载接口
  1056. @bp.route('/download_template', methods=['GET'])
  1057. def download_template():
  1058. """
  1059. 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
  1060. """
  1061. table_name = request.args.get('table')
  1062. if not table_name:
  1063. return jsonify({'error': '表名参数缺失'}), 400
  1064. columns = get_column_names(table_name)
  1065. if not columns:
  1066. return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
  1067. # 不包括 ID 列
  1068. if 'id' in columns:
  1069. columns.remove('id')
  1070. df = pd.DataFrame(columns=columns)
  1071. file_format = request.args.get('format', 'excel').lower()
  1072. try:
  1073. if file_format == 'csv':
  1074. output = BytesIO()
  1075. df.to_csv(output, index=False, encoding='utf-8')
  1076. output.seek(0)
  1077. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
  1078. mimetype='text/csv')
  1079. else:
  1080. output = BytesIO()
  1081. df.to_excel(output, index=False, engine='openpyxl')
  1082. output.seek(0)
  1083. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
  1084. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  1085. except Exception as e:
  1086. logger.error(f"Failed to generate template: {e}", exc_info=True)
  1087. return jsonify({'error': '生成模板文件失败'}), 500
  1088. @bp.route('/update-threshold', methods=['POST'])
  1089. def update_threshold():
  1090. """
  1091. 更新训练阈值的API接口
  1092. @body_param threshold: 新的阈值值(整数)
  1093. @return: JSON响应
  1094. """
  1095. try:
  1096. data = request.get_json()
  1097. new_threshold = data.get('threshold')
  1098. # 验证新阈值
  1099. if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
  1100. return jsonify({
  1101. 'error': '无效的阈值值,必须为正数'
  1102. }), 400
  1103. # 更新当前应用的阈值配置
  1104. current_app.config['THRESHOLD'] = int(new_threshold)
  1105. return jsonify({
  1106. 'success': True,
  1107. 'message': f'阈值已更新为 {new_threshold}',
  1108. 'new_threshold': new_threshold
  1109. })
  1110. except Exception as e:
  1111. logging.error(f"更新阈值失败: {str(e)}")
  1112. return jsonify({
  1113. 'error': f'更新阈值失败: {str(e)}'
  1114. }), 500
  1115. @bp.route('/get-threshold', methods=['GET'])
  1116. def get_threshold():
  1117. """
  1118. 获取当前训练阈值的API接口
  1119. @return: JSON响应
  1120. """
  1121. try:
  1122. current_threshold = current_app.config['THRESHOLD']
  1123. default_threshold = current_app.config['DEFAULT_THRESHOLD']
  1124. return jsonify({
  1125. 'current_threshold': current_threshold,
  1126. 'default_threshold': default_threshold
  1127. })
  1128. except Exception as e:
  1129. logging.error(f"获取阈值失败: {str(e)}")
  1130. return jsonify({
  1131. 'error': f'获取阈值失败: {str(e)}'
  1132. }), 500
  1133. @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
  1134. def set_current_dataset(data_type, dataset_id):
  1135. """
  1136. 将指定数据集设置为current数据集
  1137. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1138. @param dataset_id: 要设置为current的数据集ID
  1139. @return: JSON响应
  1140. """
  1141. Session = sessionmaker(bind=db.engine)
  1142. session = Session()
  1143. try:
  1144. # 验证数据集存在且类型匹配
  1145. dataset = session.query(Datasets)\
  1146. .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
  1147. .first()
  1148. if not dataset:
  1149. return jsonify({
  1150. 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
  1151. }), 404
  1152. # 根据数据类型选择表
  1153. if data_type == 'reduce':
  1154. table = CurrentReduce
  1155. table_name = 'current_reduce'
  1156. elif data_type == 'reflux':
  1157. table = CurrentReflux
  1158. table_name = 'current_reflux'
  1159. else:
  1160. return jsonify({'error': '无效的数据集类型'}), 400
  1161. # 清空current表
  1162. session.query(table).delete()
  1163. # 重置自增主键计数器
  1164. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  1165. # 从指定数据集复制数据到current表
  1166. dataset_table_name = f"dataset_{dataset_id}"
  1167. copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
  1168. session.execute(copy_sql)
  1169. session.commit()
  1170. return jsonify({
  1171. 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
  1172. 'dataset_id': dataset_id,
  1173. 'dataset_name': dataset.Dataset_name,
  1174. 'row_count': dataset.Row_count
  1175. }), 200
  1176. except Exception as e:
  1177. session.rollback()
  1178. logger.error(f'设置current数据集失败: {str(e)}')
  1179. return jsonify({'error': str(e)}), 500
  1180. finally:
  1181. session.close()
  1182. @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
  1183. def get_model_history(data_type):
  1184. """
  1185. 获取模型训练历史数据的API接口
  1186. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1187. @return: JSON响应,包含时间序列的模型性能数据
  1188. """
  1189. Session = sessionmaker(bind=db.engine)
  1190. session = Session()
  1191. try:
  1192. # 查询所有自动生成的数据集,按时间排序
  1193. datasets = session.query(Datasets).filter(
  1194. Datasets.Dataset_type == data_type,
  1195. Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
  1196. ).order_by(Datasets.Uploaded_at).all()
  1197. history_data = []
  1198. for dataset in datasets:
  1199. # 查找对应的自动训练模型
  1200. model = session.query(Models).filter(
  1201. Models.DatasetID == dataset.Dataset_ID,
  1202. Models.Model_name.like(f'auto_trained_{data_type}_%')
  1203. ).first()
  1204. print(model)
  1205. print(dataset)
  1206. if model and model.Performance_score is not None:
  1207. # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
  1208. created_at = model.Created_at.isoformat() if model.Created_at else None
  1209. history_data.append({
  1210. 'dataset_id': dataset.Dataset_ID,
  1211. 'row_count': dataset.Row_count,
  1212. 'model_id': model.ModelID,
  1213. 'model_name': model.Model_name,
  1214. 'performance_score': float(model.Performance_score),
  1215. 'timestamp': created_at
  1216. })
  1217. # 按时间戳排序
  1218. history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
  1219. # 构建返回数据,分离各个指标序列便于前端绘图
  1220. response_data = {
  1221. 'data_type': data_type,
  1222. 'timestamps': [item['timestamp'] for item in history_data],
  1223. 'row_counts': [item['row_count'] for item in history_data],
  1224. 'performance_scores': [item['performance_score'] for item in history_data],
  1225. 'model_details': history_data # 保留完整数据供前端使用
  1226. }
  1227. print(response_data)
  1228. return jsonify(response_data), 200
  1229. except Exception as e:
  1230. logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
  1231. return jsonify({'error': str(e)}), 500
  1232. finally:
  1233. session.close()
  1234. @bp.route('/batch-delete-datasets', methods=['POST'])
  1235. def batch_delete_datasets():
  1236. """
  1237. 批量删除数据集的API接口
  1238. @body_param dataset_ids: 要删除的数据集ID列表
  1239. @return: JSON响应
  1240. """
  1241. try:
  1242. data = request.get_json()
  1243. dataset_ids = data.get('dataset_ids', [])
  1244. if not dataset_ids:
  1245. return jsonify({'error': '未提供数据集ID列表'}), 400
  1246. results = {
  1247. 'success': [],
  1248. 'failed': [],
  1249. 'protected': [] # 被模型使用的数据集
  1250. }
  1251. for dataset_id in dataset_ids:
  1252. try:
  1253. # 调用单个删除接口
  1254. response = delete_dataset_endpoint(dataset_id)
  1255. # 解析响应
  1256. if response[1] == 200:
  1257. results['success'].append(dataset_id)
  1258. elif response[1] == 400 and 'models' in response[0].json:
  1259. # 数据集被模型保护
  1260. results['protected'].append({
  1261. 'id': dataset_id,
  1262. 'models': response[0].json['models']
  1263. })
  1264. else:
  1265. results['failed'].append({
  1266. 'id': dataset_id,
  1267. 'reason': response[0].json.get('error', '删除失败')
  1268. })
  1269. except Exception as e:
  1270. logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
  1271. results['failed'].append({
  1272. 'id': dataset_id,
  1273. 'reason': str(e)
  1274. })
  1275. # 构建响应消息
  1276. message = f"成功删除 {len(results['success'])} 个数据集"
  1277. if results['protected']:
  1278. message += f", {len(results['protected'])} 个数据集被保护"
  1279. if results['failed']:
  1280. message += f", {len(results['failed'])} 个数据集删除失败"
  1281. return jsonify({
  1282. 'message': message,
  1283. 'results': results
  1284. }), 200
  1285. except Exception as e:
  1286. logger.error(f'批量删除数据集失败: {str(e)}')
  1287. return jsonify({'error': str(e)}), 500
  1288. @bp.route('/batch-delete-models', methods=['POST'])
  1289. def batch_delete_models():
  1290. """
  1291. 批量删除模型的API接口
  1292. @body_param model_ids: 要删除的模型ID列表
  1293. @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
  1294. @return: JSON响应
  1295. """
  1296. try:
  1297. data = request.get_json()
  1298. model_ids = data.get('model_ids', [])
  1299. delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
  1300. if not model_ids:
  1301. return jsonify({'error': '未提供模型ID列表'}), 400
  1302. results = {
  1303. 'success': [],
  1304. 'failed': [],
  1305. 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
  1306. }
  1307. for model_id in model_ids:
  1308. try:
  1309. # 调用单个删除接口
  1310. response = delete_model(model_id, delete_dataset=delete_datasets)
  1311. # 解析响应
  1312. if response[1] == 200:
  1313. results['success'].append(model_id)
  1314. # 如果删除了关联数据集,记录数据集ID
  1315. if 'dataset_info' in response[0].json:
  1316. results['datasets_deleted'].append(
  1317. response[0].json['dataset_info']['dataset_id']
  1318. )
  1319. else:
  1320. results['failed'].append({
  1321. 'id': model_id,
  1322. 'reason': response[0].json.get('error', '删除失败')
  1323. })
  1324. except Exception as e:
  1325. logger.error(f'删除模型 {model_id} 失败: {str(e)}')
  1326. results['failed'].append({
  1327. 'id': model_id,
  1328. 'reason': str(e)
  1329. })
  1330. # 构建响应消息
  1331. message = f"成功删除 {len(results['success'])} 个模型"
  1332. if results['datasets_deleted']:
  1333. message += f", {len(results['datasets_deleted'])} 个关联数据集"
  1334. if results['failed']:
  1335. message += f", {len(results['failed'])} 个模型删除失败"
  1336. return jsonify({
  1337. 'message': message,
  1338. 'results': results
  1339. }), 200
  1340. except Exception as e:
  1341. logger.error(f'批量删除模型失败: {str(e)}')
  1342. return jsonify({'error': str(e)}), 500
  1343. @bp.route('/kriging_interpolation', methods=['POST'])
  1344. def kriging_interpolation():
  1345. try:
  1346. data = request.get_json()
  1347. required = ['file_name', 'emission_column', 'points']
  1348. if not all(k in data for k in required):
  1349. return jsonify({"error": "Missing parameters"}), 400
  1350. # 添加坐标顺序验证
  1351. points = data['points']
  1352. if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
  1353. return jsonify({"error": "Invalid points format"}), 400
  1354. result = create_kriging(
  1355. data['file_name'],
  1356. data['emission_column'],
  1357. data['points']
  1358. )
  1359. return jsonify(result)
  1360. except Exception as e:
  1361. return jsonify({"error": str(e)}), 500
  1362. # 切换模型接口
  1363. @bp.route('/switch-model', methods=['POST'])
  1364. def switch_model():
  1365. session = None
  1366. try:
  1367. data = request.get_json()
  1368. model_id = data.get('model_id')
  1369. model_name = data.get('model_name')
  1370. # 创建 session
  1371. Session = sessionmaker(bind=db.engine)
  1372. session = Session()
  1373. # 查找模型
  1374. model = session.query(Models).filter_by(ModelID=model_id).first()
  1375. if not model:
  1376. return jsonify({'error': 'Model not found'}), 404
  1377. # 更新模型状态(或其他切换逻辑)
  1378. # 假设此处是更新模型的某些字段来进行切换
  1379. model.status = 'active' # 假设有一个字段记录模型状态
  1380. session.commit()
  1381. # 记录切换日志
  1382. logger.info(f'Model {model_name} (ID: {model_id}) switched successfully.')
  1383. return jsonify({'success': True, 'message': f'Model {model_name} switched successfully!'}), 200
  1384. except Exception as e:
  1385. logger.error('Failed to switch model:', exc_info=True)
  1386. return jsonify({'error': str(e)}), 400
  1387. finally:
  1388. if session:
  1389. session.close()
  1390. # 添加查看登录状态接口
  1391. @bp.route('/getInfo', methods=['GET'])
  1392. def getInfo_user():
  1393. name = session.get("name")
  1394. if name is not None:
  1395. return jsonify(name=name)
  1396. else:
  1397. return jsonify(msg="错误")
  1398. # 添加退出登录状态接口
  1399. @bp.route('/logout', methods=['GET', 'POST'])
  1400. def logout_user():
  1401. try:
  1402. session.clear()
  1403. return jsonify({"msg": "退出成功"}), 200
  1404. except Exception as e:
  1405. logger.error(f"Error during logout process: {e}", exc_info=True)
  1406. return jsonify({"msg": "退出失败"}), 500
  1407. # 获取软件介绍信息的路由
  1408. @bp.route('/software-intro/<int:id>', methods=['GET'])
  1409. def get_software_intro(id):
  1410. try:
  1411. conn = get_db()
  1412. cursor = conn.cursor()
  1413. cursor.execute('SELECT title, intro FROM software_intro WHERE id = ?', (id,))
  1414. result = cursor.fetchone()
  1415. conn.close()
  1416. if result:
  1417. title, intro = result
  1418. return jsonify({
  1419. 'title': title,
  1420. 'intro': intro
  1421. })
  1422. return jsonify({}), 404
  1423. except sqlite3.Error as e:
  1424. print(f"数据库错误: {e}")
  1425. return jsonify({"error": f"数据库错误: {str(e)}"}), 500
  1426. # 更新软件介绍信息的路由
  1427. @bp.route('/software-intro/<int:id>', methods=['PUT'])
  1428. def update_software_intro(id):
  1429. try:
  1430. data = request.get_json()
  1431. title = data.get('title')
  1432. intro = data.get('intro')
  1433. conn = get_db()
  1434. cursor = conn.cursor()
  1435. cursor.execute('UPDATE software_intro SET title =?, intro =? WHERE id = ?', (title, intro, id))
  1436. conn.commit()
  1437. conn.close()
  1438. return jsonify({'message': '软件介绍更新成功'})
  1439. except sqlite3.Error as e:
  1440. print(f"数据库错误: {e}")
  1441. return jsonify({"error": f"数据库错误: {str(e)}"}), 500
  1442. # 处理图片上传的路由
  1443. @bp.route('/upload-image', methods=['POST'])
  1444. def upload_image():
  1445. file = request.files['image']
  1446. if file:
  1447. filename = str(uuid.uuid4()) + '.' + file.filename.rsplit('.', 1)[1].lower()
  1448. file.save(os.path.join(bp.config['UPLOAD_FOLDER'], filename))
  1449. imageUrl = f'http://127.0.0.1:5000/uploads/{filename}'
  1450. return jsonify({'imageUrl': imageUrl})
  1451. return jsonify({'error': '未找到图片文件'}), 400
  1452. # 配置静态资源服务
  1453. @bp.route('/uploads/<path:filename>')
  1454. def serve_image(filename):
  1455. uploads_folder = os.path.join(bp.root_path, 'uploads')
  1456. return send_from_directory(uploads_folder, filename)