routes.py 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040
  1. import sqlite3
  2. from flask import Blueprint, request, jsonify,current_app
  3. from werkzeug.security import generate_password_hash
  4. from .model import predict, train_and_save_model, calculate_model_score
  5. import pandas as pd
  6. from . import db # 从 app 包导入 db 实例
  7. from sqlalchemy.engine.reflection import Inspector
  8. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  9. import os
  10. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  11. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  12. predict_to_Q, Q_to_t_ha, create_kriging
  13. from sqlalchemy.orm import sessionmaker
  14. import logging
  15. from sqlalchemy import text, func
  16. from .tasks import train_model_task
  17. from datetime import datetime
  18. # 配置日志
  19. logging.basicConfig(level=logging.DEBUG)
  20. logger = logging.getLogger(__name__)
  21. # 创建蓝图 (Blueprint),用于分离路由
  22. bp = Blueprint('routes', __name__)
  23. # 封装数据库连接函数
  24. def get_db_connection():
  25. return sqlite3.connect('software_intro.db')
  26. # 密码加密
  27. def hash_password(password):
  28. return generate_password_hash(password)
  29. def get_db():
  30. """ 获取数据库连接 """
  31. return sqlite3.connect(current_app.config['DATABASE'])
  32. # 添加一个新的辅助函数来检查数据集大小并触发训练
  33. def check_and_trigger_training(session, dataset_type, dataset_df):
  34. """
  35. 检查当前数据集大小是否跨越新的阈值点并触发训练
  36. Args:
  37. session: 数据库会话
  38. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  39. dataset_df: 数据集 DataFrame
  40. Returns:
  41. tuple: (是否触发训练, 任务ID)
  42. """
  43. try:
  44. # 根据数据集类型选择表
  45. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  46. # 获取当前记录数
  47. current_count = session.query(func.count()).select_from(table).scalar()
  48. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  49. new_records = len(dataset_df) # 需要从上层函数传入
  50. # 计算新增数据前的记录数
  51. previous_count = current_count - new_records
  52. # 设置阈值
  53. THRESHOLD = current_app.config['THRESHOLD']
  54. # 计算上一个阈值点(基于新增前的数据量)
  55. last_threshold = previous_count // THRESHOLD * THRESHOLD
  56. # 计算当前所在阈值点
  57. current_threshold = current_count // THRESHOLD * THRESHOLD
  58. # 检查是否跨越了新的阈值点
  59. if current_threshold > last_threshold and current_count >= THRESHOLD:
  60. # 触发异步训练任务
  61. task = train_model_task.delay(
  62. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  63. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  64. model_description=f'Auto trained model at {current_threshold} records threshold',
  65. data_type=dataset_type
  66. )
  67. return True, task.id
  68. return False, None
  69. except Exception as e:
  70. logging.error(f"检查并触发训练失败: {str(e)}")
  71. return False, None
  72. @bp.route('/upload-dataset', methods=['POST'])
  73. def upload_dataset():
  74. # 创建 session
  75. Session = sessionmaker(bind=db.engine)
  76. session = Session()
  77. try:
  78. if 'file' not in request.files:
  79. return jsonify({'error': 'No file part'}), 400
  80. file = request.files['file']
  81. if file.filename == '' or not allowed_file(file.filename):
  82. return jsonify({'error': 'No selected file or invalid file type'}), 400
  83. dataset_name = request.form.get('dataset_name')
  84. dataset_description = request.form.get('dataset_description', 'No description provided')
  85. dataset_type = request.form.get('dataset_type')
  86. if not dataset_type:
  87. return jsonify({'error': 'Dataset type is required'}), 400
  88. new_dataset = Datasets(
  89. Dataset_name=dataset_name,
  90. Dataset_description=dataset_description,
  91. Row_count=0,
  92. Status='Datasets_upgraded',
  93. Dataset_type=dataset_type,
  94. Uploaded_at=datetime.now()
  95. )
  96. session.add(new_dataset)
  97. session.commit()
  98. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  99. upload_folder = current_app.config['UPLOAD_FOLDER']
  100. file_path = os.path.join(upload_folder, unique_filename)
  101. file.save(file_path)
  102. dataset_df = pd.read_excel(file_path)
  103. new_dataset.Row_count = len(dataset_df)
  104. new_dataset.Status = 'excel_file_saved success'
  105. session.commit()
  106. # 处理列名
  107. dataset_df = clean_column_names(dataset_df)
  108. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  109. column_types = infer_column_types(dataset_df)
  110. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  111. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  112. # 根据 dataset_type 决定插入到哪个已有表
  113. if dataset_type == 'reduce':
  114. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  115. elif dataset_type == 'reflux':
  116. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  117. session.commit()
  118. # 在完成数据插入后,检查是否需要触发训练
  119. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  120. response_data = {
  121. 'message': f'Dataset {dataset_name} uploaded successfully!',
  122. 'dataset_id': new_dataset.Dataset_ID,
  123. 'filename': unique_filename,
  124. 'training_triggered': training_triggered
  125. }
  126. if training_triggered:
  127. response_data['task_id'] = task_id
  128. response_data['message'] += ' Auto-training has been triggered.'
  129. return jsonify(response_data), 201
  130. except Exception as e:
  131. session.rollback()
  132. logging.error('Failed to process the dataset upload:', exc_info=True)
  133. return jsonify({'error': str(e)}), 500
  134. finally:
  135. # 确保 session 总是被关闭
  136. if session:
  137. session.close()
  138. @bp.route('/train-and-save-model', methods=['POST'])
  139. def train_and_save_model_endpoint():
  140. # 创建 sessionmaker 实例
  141. Session = sessionmaker(bind=db.engine)
  142. session = Session()
  143. data = request.get_json()
  144. # 从请求中解析参数
  145. model_type = data.get('model_type')
  146. model_name = data.get('model_name')
  147. model_description = data.get('model_description')
  148. data_type = data.get('data_type')
  149. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  150. try:
  151. # 调用训练和保存模型的函数
  152. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  153. model_id = result[1] if result else None
  154. # 计算模型评分
  155. if model_id:
  156. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  157. if model_info:
  158. score = calculate_model_score(model_info)
  159. # 更新模型评分
  160. model_info.Performance_score = score
  161. session.commit()
  162. result = {'model_id': model_id, 'model_score': score}
  163. # 返回成功响应
  164. return jsonify({
  165. 'message': 'Model trained and saved successfully',
  166. 'result': result
  167. }), 200
  168. except Exception as e:
  169. session.rollback()
  170. logging.error('Failed to process the model training:', exc_info=True)
  171. return jsonify({
  172. 'error': 'Failed to train and save model',
  173. 'message': str(e)
  174. }), 500
  175. finally:
  176. session.close()
  177. @bp.route('/predict', methods=['POST'])
  178. def predict_route():
  179. # 创建 sessionmaker 实例
  180. Session = sessionmaker(bind=db.engine)
  181. session = Session()
  182. try:
  183. data = request.get_json()
  184. model_id = data.get('model_id') # 提取模型名称
  185. parameters = data.get('parameters', {}) # 提取所有变量
  186. # 根据model_id获取模型Data_type
  187. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  188. if not model_info:
  189. return jsonify({'error': 'Model not found'}), 404
  190. data_type = model_info.Data_type
  191. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  192. # 如果为reduce,则不需要传入target_ph
  193. if data_type == 'reduce':
  194. # 获取传入的init_ph、target_ph参数
  195. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  196. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  197. # 从输入数据中删除'target_pH'列
  198. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  199. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  200. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  201. if data_type == 'reduce':
  202. predictions = predictions[0]
  203. # 将预测结果转换为Q
  204. Q = predict_to_Q(predictions, init_ph, target_ph)
  205. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  206. print(predictions)
  207. return jsonify({'result': predictions}), 200
  208. except Exception as e:
  209. logging.error('Failed to predict:', exc_info=True)
  210. return jsonify({'error': str(e)}), 400
  211. # 为指定模型计算评分Performance_score,需要提供model_id
  212. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  213. def score_model(model_id):
  214. # 创建 sessionmaker 实例
  215. Session = sessionmaker(bind=db.engine)
  216. session = Session()
  217. try:
  218. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  219. if not model_info:
  220. return jsonify({'error': 'Model not found'}), 404
  221. # 计算模型评分
  222. score = calculate_model_score(model_info)
  223. # 更新模型记录中的评分
  224. model_info.Performance_score = score
  225. session.commit()
  226. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  227. except Exception as e:
  228. logging.error('Failed to process the dataset upload:', exc_info=True)
  229. return jsonify({'error': str(e)}), 400
  230. finally:
  231. session.close()
  232. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  233. def delete_dataset_endpoint(dataset_id):
  234. """
  235. 删除数据集的API接口
  236. @param dataset_id: 要删除的数据集ID
  237. @return: JSON响应
  238. """
  239. # 创建 sessionmaker 实例
  240. Session = sessionmaker(bind=db.engine)
  241. session = Session()
  242. try:
  243. # 查询数据集
  244. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  245. if not dataset:
  246. return jsonify({'error': '未找到数据集'}), 404
  247. # 检查是否有模型使用了该数据集
  248. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  249. if models_using_dataset:
  250. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  251. return jsonify({
  252. 'error': '无法删除数据集,因为以下模型正在使用它',
  253. 'models': models_info
  254. }), 400
  255. # 删除Excel文件
  256. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  257. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  258. if os.path.exists(file_path):
  259. try:
  260. os.remove(file_path)
  261. except OSError as e:
  262. logger.error(f'删除文件失败: {str(e)}')
  263. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  264. # 删除数据表
  265. table_name = f"dataset_{dataset.Dataset_ID}"
  266. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  267. # 删除数据集记录
  268. session.delete(dataset)
  269. session.commit()
  270. return jsonify({
  271. 'message': '数据集删除成功',
  272. 'deleted_files': [filename]
  273. }), 200
  274. except Exception as e:
  275. session.rollback()
  276. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  277. return jsonify({'error': str(e)}), 500
  278. finally:
  279. session.close()
  280. @bp.route('/tables', methods=['GET'])
  281. def list_tables():
  282. engine = db.engine # 使用 db 实例的 engine
  283. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  284. table_names = inspector.get_table_names() # 获取所有表名
  285. return jsonify(table_names) # 以 JSON 形式返回表名列表
  286. @bp.route('/models/<int:model_id>', methods=['GET'])
  287. def get_model(model_id):
  288. """
  289. 获取单个模型信息的API接口
  290. @param model_id: 模型ID
  291. @return: JSON响应
  292. """
  293. Session = sessionmaker(bind=db.engine)
  294. session = Session()
  295. try:
  296. model = session.query(Models).filter_by(ModelID=model_id).first()
  297. if model:
  298. return jsonify({
  299. 'ModelID': model.ModelID,
  300. 'Model_name': model.Model_name,
  301. 'Model_type': model.Model_type,
  302. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  303. 'Description': model.Description,
  304. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  305. 'Data_type': model.Data_type
  306. })
  307. else:
  308. return jsonify({'message': '未找到模型'}), 404
  309. except Exception as e:
  310. logger.error(f'获取模型信息失败: {str(e)}')
  311. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  312. finally:
  313. session.close()
  314. @bp.route('/model-parameters', methods=['GET'])
  315. def get_all_model_parameters():
  316. """
  317. 获取所有模型参数的API接口
  318. @return: JSON响应
  319. """
  320. Session = sessionmaker(bind=db.engine)
  321. session = Session()
  322. try:
  323. parameters = session.query(ModelParameters).all()
  324. if parameters:
  325. result = [
  326. {
  327. 'ParamID': param.ParamID,
  328. 'ModelID': param.ModelID,
  329. 'ParamName': param.ParamName,
  330. 'ParamValue': param.ParamValue
  331. }
  332. for param in parameters
  333. ]
  334. return jsonify(result)
  335. else:
  336. return jsonify({'message': '未找到任何参数'}), 404
  337. except Exception as e:
  338. logger.error(f'获取所有模型参数失败: {str(e)}')
  339. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  340. finally:
  341. session.close()
  342. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  343. def get_model_parameters(model_id):
  344. try:
  345. model = Models.query.filter_by(ModelID=model_id).first()
  346. if model:
  347. # 获取该模型的所有参数
  348. parameters = [
  349. {
  350. 'ParamID': param.ParamID,
  351. 'ParamName': param.ParamName,
  352. 'ParamValue': param.ParamValue
  353. }
  354. for param in model.parameters
  355. ]
  356. # 返回模型参数信息
  357. return jsonify({
  358. 'ModelID': model.ModelID,
  359. 'ModelName': model.ModelName,
  360. 'ModelType': model.ModelType,
  361. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  362. 'Description': model.Description,
  363. 'Parameters': parameters
  364. })
  365. else:
  366. return jsonify({'message': 'Model not found'}), 404
  367. except Exception as e:
  368. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  369. @bp.route('/train-model-async', methods=['POST'])
  370. def train_model_async():
  371. """
  372. 异步训练模型的API接口
  373. """
  374. try:
  375. data = request.get_json()
  376. # 从请求中获取参数
  377. model_type = data.get('model_type')
  378. model_name = data.get('model_name')
  379. model_description = data.get('model_description')
  380. data_type = data.get('data_type')
  381. dataset_id = data.get('dataset_id', None)
  382. # 验证必要参数
  383. if not all([model_type, model_name, data_type]):
  384. return jsonify({
  385. 'error': 'Missing required parameters'
  386. }), 400
  387. # 如果提供了dataset_id,验证数据集是否存在
  388. if dataset_id:
  389. Session = sessionmaker(bind=db.engine)
  390. session = Session()
  391. try:
  392. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  393. if not dataset:
  394. return jsonify({
  395. 'error': f'Dataset with ID {dataset_id} not found'
  396. }), 404
  397. finally:
  398. session.close()
  399. # 启动异步任务
  400. task = train_model_task.delay(
  401. model_type=model_type,
  402. model_name=model_name,
  403. model_description=model_description,
  404. data_type=data_type,
  405. dataset_id=dataset_id
  406. )
  407. # 返回任务ID
  408. return jsonify({
  409. 'task_id': task.id,
  410. 'message': 'Model training started'
  411. }), 202
  412. except Exception as e:
  413. logging.error('Failed to start async training task:', exc_info=True)
  414. return jsonify({
  415. 'error': str(e)
  416. }), 500
  417. @bp.route('/task-status/<task_id>', methods=['GET'])
  418. def get_task_status(task_id):
  419. """
  420. 获取异步任务状态的API接口
  421. """
  422. try:
  423. task = train_model_task.AsyncResult(task_id)
  424. if task.state == 'PENDING':
  425. response = {
  426. 'state': task.state,
  427. 'status': 'Task is waiting for execution'
  428. }
  429. elif task.state == 'FAILURE':
  430. response = {
  431. 'state': task.state,
  432. 'status': 'Task failed',
  433. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  434. }
  435. elif task.state == 'SUCCESS':
  436. response = {
  437. 'state': task.state,
  438. 'status': 'Task completed successfully',
  439. 'result': task.get()
  440. }
  441. else:
  442. response = {
  443. 'state': task.state,
  444. 'status': 'Task is in progress'
  445. }
  446. return jsonify(response), 200
  447. except Exception as e:
  448. return jsonify({
  449. 'error': str(e)
  450. }), 500
  451. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  452. def delete_model_route(model_id):
  453. # 将URL参数转换为布尔值
  454. delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
  455. # 调用原始函数
  456. return delete_model(model_id, delete_dataset=delete_dataset_param)
  457. def delete_model(model_id, delete_dataset=False):
  458. """
  459. 删除指定模型的API接口
  460. @param model_id: 要删除的模型ID
  461. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  462. @return: JSON响应
  463. """
  464. Session = sessionmaker(bind=db.engine)
  465. session = Session()
  466. try:
  467. # 查询模型信息
  468. model = session.query(Models).filter_by(ModelID=model_id).first()
  469. if not model:
  470. return jsonify({'error': '未找到指定模型'}), 404
  471. dataset_id = model.DatasetID
  472. # 1. 先删除模型记录
  473. session.delete(model)
  474. session.commit()
  475. # 2. 删除模型文件
  476. model_file = f"rf_model_{model_id}.pkl"
  477. model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
  478. if os.path.exists(model_path):
  479. try:
  480. os.remove(model_path)
  481. except OSError as e:
  482. # 如果删除文件失败,回滚数据库操作
  483. session.rollback()
  484. logger.error(f'删除模型文件失败: {str(e)}')
  485. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  486. # 3. 如果需要删除关联的数据集
  487. if delete_dataset and dataset_id:
  488. try:
  489. dataset_response = delete_dataset_endpoint(dataset_id)
  490. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  491. # 如果删除数据集失败,回滚之前的操作
  492. session.rollback()
  493. return jsonify({
  494. 'error': '删除关联数据集失败',
  495. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  496. }), 500
  497. except Exception as e:
  498. session.rollback()
  499. logger.error(f'删除关联数据集失败: {str(e)}')
  500. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  501. response_data = {
  502. 'message': '模型删除成功',
  503. 'deleted_files': [model_file]
  504. }
  505. if delete_dataset:
  506. response_data['dataset_info'] = {
  507. 'dataset_id': dataset_id,
  508. 'message': '关联数据集已删除'
  509. }
  510. return jsonify(response_data), 200
  511. except Exception as e:
  512. session.rollback()
  513. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  514. return jsonify({'error': str(e)}), 500
  515. finally:
  516. session.close()
  517. # 添加一个新的API端点来清空指定数据集
  518. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  519. def clear_dataset(data_type):
  520. """
  521. 清空指定类型的数据集并递增计数
  522. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  523. @return: JSON响应
  524. """
  525. # 创建 sessionmaker 实例
  526. Session = sessionmaker(bind=db.engine)
  527. session = Session()
  528. try:
  529. # 根据数据集类型选择表
  530. if data_type == 'reduce':
  531. table = CurrentReduce
  532. table_name = 'current_reduce'
  533. elif data_type == 'reflux':
  534. table = CurrentReflux
  535. table_name = 'current_reflux'
  536. else:
  537. return jsonify({'error': '无效的数据集类型'}), 400
  538. # 清空表内容
  539. session.query(table).delete()
  540. # 重置自增主键计数器
  541. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  542. session.commit()
  543. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  544. except Exception as e:
  545. session.rollback()
  546. return jsonify({'error': str(e)}), 500
  547. finally:
  548. session.close()
  549. @bp.route('/update-threshold', methods=['POST'])
  550. def update_threshold():
  551. """
  552. 更新训练阈值的API接口
  553. @body_param threshold: 新的阈值值(整数)
  554. @return: JSON响应
  555. """
  556. try:
  557. data = request.get_json()
  558. new_threshold = data.get('threshold')
  559. # 验证新阈值
  560. if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
  561. return jsonify({
  562. 'error': '无效的阈值值,必须为正数'
  563. }), 400
  564. # 更新当前应用的阈值配置
  565. current_app.config['THRESHOLD'] = int(new_threshold)
  566. return jsonify({
  567. 'success': True,
  568. 'message': f'阈值已更新为 {new_threshold}',
  569. 'new_threshold': new_threshold
  570. })
  571. except Exception as e:
  572. logging.error(f"更新阈值失败: {str(e)}")
  573. return jsonify({
  574. 'error': f'更新阈值失败: {str(e)}'
  575. }), 500
  576. @bp.route('/get-threshold', methods=['GET'])
  577. def get_threshold():
  578. """
  579. 获取当前训练阈值的API接口
  580. @return: JSON响应
  581. """
  582. try:
  583. current_threshold = current_app.config['THRESHOLD']
  584. default_threshold = current_app.config['DEFAULT_THRESHOLD']
  585. return jsonify({
  586. 'current_threshold': current_threshold,
  587. 'default_threshold': default_threshold
  588. })
  589. except Exception as e:
  590. logging.error(f"获取阈值失败: {str(e)}")
  591. return jsonify({
  592. 'error': f'获取阈值失败: {str(e)}'
  593. }), 500
  594. @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
  595. def set_current_dataset(data_type, dataset_id):
  596. """
  597. 将指定数据集设置为current数据集
  598. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  599. @param dataset_id: 要设置为current的数据集ID
  600. @return: JSON响应
  601. """
  602. Session = sessionmaker(bind=db.engine)
  603. session = Session()
  604. try:
  605. # 验证数据集存在且类型匹配
  606. dataset = session.query(Datasets)\
  607. .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
  608. .first()
  609. if not dataset:
  610. return jsonify({
  611. 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
  612. }), 404
  613. # 根据数据类型选择表
  614. if data_type == 'reduce':
  615. table = CurrentReduce
  616. table_name = 'current_reduce'
  617. elif data_type == 'reflux':
  618. table = CurrentReflux
  619. table_name = 'current_reflux'
  620. else:
  621. return jsonify({'error': '无效的数据集类型'}), 400
  622. # 清空current表
  623. session.query(table).delete()
  624. # 重置自增主键计数器
  625. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  626. # 从指定数据集复制数据到current表
  627. dataset_table_name = f"dataset_{dataset_id}"
  628. copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
  629. session.execute(copy_sql)
  630. session.commit()
  631. return jsonify({
  632. 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
  633. 'dataset_id': dataset_id,
  634. 'dataset_name': dataset.Dataset_name,
  635. 'row_count': dataset.Row_count
  636. }), 200
  637. except Exception as e:
  638. session.rollback()
  639. logger.error(f'设置current数据集失败: {str(e)}')
  640. return jsonify({'error': str(e)}), 500
  641. finally:
  642. session.close()
  643. @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
  644. def get_model_history(data_type):
  645. """
  646. 获取模型训练历史数据的API接口
  647. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  648. @return: JSON响应,包含时间序列的模型性能数据
  649. """
  650. Session = sessionmaker(bind=db.engine)
  651. session = Session()
  652. try:
  653. # 查询所有自动生成的数据集,按时间排序
  654. datasets = session.query(Datasets).filter(
  655. Datasets.Dataset_type == data_type,
  656. Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
  657. ).order_by(Datasets.Uploaded_at).all()
  658. history_data = []
  659. for dataset in datasets:
  660. # 查找对应的自动训练模型
  661. model = session.query(Models).filter(
  662. Models.DatasetID == dataset.Dataset_ID,
  663. Models.Model_name.like(f'auto_trained_{data_type}_%')
  664. ).first()
  665. if model and model.Performance_score is not None:
  666. # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
  667. created_at = model.Created_at.isoformat() if model.Created_at else None
  668. history_data.append({
  669. 'dataset_id': dataset.Dataset_ID,
  670. 'row_count': dataset.Row_count,
  671. 'model_id': model.ModelID,
  672. 'model_name': model.Model_name,
  673. 'performance_score': float(model.Performance_score),
  674. 'timestamp': created_at
  675. })
  676. # 按时间戳排序
  677. history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
  678. # 构建返回数据,分离各个指标序列便于前端绘图
  679. response_data = {
  680. 'data_type': data_type,
  681. 'timestamps': [item['timestamp'] for item in history_data],
  682. 'row_counts': [item['row_count'] for item in history_data],
  683. 'performance_scores': [item['performance_score'] for item in history_data],
  684. 'model_details': history_data # 保留完整数据供前端使用
  685. }
  686. return jsonify(response_data), 200
  687. except Exception as e:
  688. logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
  689. return jsonify({'error': str(e)}), 500
  690. finally:
  691. session.close()
  692. @bp.route('/batch-delete-datasets', methods=['POST'])
  693. def batch_delete_datasets():
  694. """
  695. 批量删除数据集的API接口
  696. @body_param dataset_ids: 要删除的数据集ID列表
  697. @return: JSON响应
  698. """
  699. try:
  700. data = request.get_json()
  701. dataset_ids = data.get('dataset_ids', [])
  702. if not dataset_ids:
  703. return jsonify({'error': '未提供数据集ID列表'}), 400
  704. results = {
  705. 'success': [],
  706. 'failed': [],
  707. 'protected': [] # 被模型使用的数据集
  708. }
  709. for dataset_id in dataset_ids:
  710. try:
  711. # 调用单个删除接口
  712. response = delete_dataset_endpoint(dataset_id)
  713. # 解析响应
  714. if response[1] == 200:
  715. results['success'].append(dataset_id)
  716. elif response[1] == 400 and 'models' in response[0].json:
  717. # 数据集被模型保护
  718. results['protected'].append({
  719. 'id': dataset_id,
  720. 'models': response[0].json['models']
  721. })
  722. else:
  723. results['failed'].append({
  724. 'id': dataset_id,
  725. 'reason': response[0].json.get('error', '删除失败')
  726. })
  727. except Exception as e:
  728. logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
  729. results['failed'].append({
  730. 'id': dataset_id,
  731. 'reason': str(e)
  732. })
  733. # 构建响应消息
  734. message = f"成功删除 {len(results['success'])} 个数据集"
  735. if results['protected']:
  736. message += f", {len(results['protected'])} 个数据集被保护"
  737. if results['failed']:
  738. message += f", {len(results['failed'])} 个数据集删除失败"
  739. return jsonify({
  740. 'message': message,
  741. 'results': results
  742. }), 200
  743. except Exception as e:
  744. logger.error(f'批量删除数据集失败: {str(e)}')
  745. return jsonify({'error': str(e)}), 500
  746. @bp.route('/batch-delete-models', methods=['POST'])
  747. def batch_delete_models():
  748. """
  749. 批量删除模型的API接口
  750. @body_param model_ids: 要删除的模型ID列表
  751. @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
  752. @return: JSON响应
  753. """
  754. try:
  755. data = request.get_json()
  756. model_ids = data.get('model_ids', [])
  757. delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
  758. if not model_ids:
  759. return jsonify({'error': '未提供模型ID列表'}), 400
  760. results = {
  761. 'success': [],
  762. 'failed': [],
  763. 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
  764. }
  765. for model_id in model_ids:
  766. try:
  767. # 调用单个删除接口
  768. response = delete_model(model_id, delete_dataset=delete_datasets)
  769. # 解析响应
  770. if response[1] == 200:
  771. results['success'].append(model_id)
  772. # 如果删除了关联数据集,记录数据集ID
  773. if 'dataset_info' in response[0].json:
  774. results['datasets_deleted'].append(
  775. response[0].json['dataset_info']['dataset_id']
  776. )
  777. else:
  778. results['failed'].append({
  779. 'id': model_id,
  780. 'reason': response[0].json.get('error', '删除失败')
  781. })
  782. except Exception as e:
  783. logger.error(f'删除模型 {model_id} 失败: {str(e)}')
  784. results['failed'].append({
  785. 'id': model_id,
  786. 'reason': str(e)
  787. })
  788. # 构建响应消息
  789. message = f"成功删除 {len(results['success'])} 个模型"
  790. if results['datasets_deleted']:
  791. message += f", {len(results['datasets_deleted'])} 个关联数据集"
  792. if results['failed']:
  793. message += f", {len(results['failed'])} 个模型删除失败"
  794. return jsonify({
  795. 'message': message,
  796. 'results': results
  797. }), 200
  798. except Exception as e:
  799. logger.error(f'批量删除模型失败: {str(e)}')
  800. return jsonify({'error': str(e)}), 500
  801. @bp.route('/kriging_interpolation', methods=['POST'])
  802. def kriging_interpolation():
  803. try:
  804. data = request.get_json()
  805. required = ['file_name', 'emission_column', 'points']
  806. if not all(k in data for k in required):
  807. return jsonify({"error": "Missing parameters"}), 400
  808. # 添加坐标顺序验证
  809. points = data['points']
  810. if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
  811. return jsonify({"error": "Invalid points format"}), 400
  812. result = create_kriging(
  813. data['file_name'],
  814. data['emission_column'],
  815. data['points']
  816. )
  817. return jsonify(result)
  818. except Exception as e:
  819. return jsonify({"error": str(e)}), 500
  820. # 显示切换模型
  821. @bp.route('/models', methods=['GET'])
  822. def get_models():
  823. session = None
  824. try:
  825. # 创建 session
  826. Session = sessionmaker(bind=db.engine)
  827. session = Session()
  828. # 查询所有模型
  829. models = session.query(Models).all()
  830. logger.debug(f"Models found: {models}") # 打印查询的模型数据
  831. if not models:
  832. return jsonify({'message': 'No models found'}), 404
  833. # 将模型数据转换为字典列表
  834. models_list = [
  835. {
  836. 'ModelID': model.ModelID,
  837. 'ModelName': model.Model_name,
  838. 'ModelType': model.Model_type,
  839. 'CreatedAt': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  840. 'Description': model.Description,
  841. 'DatasetID': model.DatasetID,
  842. 'ModelFilePath': model.ModelFilePath,
  843. 'DataType': model.Data_type,
  844. 'PerformanceScore': model.Performance_score
  845. }
  846. for model in models
  847. ]
  848. return jsonify(models_list), 200
  849. except Exception as e:
  850. return jsonify({'error': str(e)}), 400
  851. finally:
  852. if session:
  853. session.close()