routes.py 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636
  1. import sqlite3
  2. from flask import Blueprint, request, jsonify, current_app
  3. from .model import predict, train_and_save_model, calculate_model_score
  4. import pandas as pd
  5. from . import db # 从 app 包导入 db 实例
  6. from sqlalchemy.engine.reflection import Inspector
  7. from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
  8. import os
  9. from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
  10. clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
  11. predict_to_Q, Q_to_t_ha
  12. from sqlalchemy.orm import sessionmaker
  13. import logging
  14. from sqlalchemy import text, select, MetaData, Table, func
  15. from .tasks import train_model_task
  16. from datetime import datetime
  17. # 配置日志
  18. logging.basicConfig(level=logging.DEBUG)
  19. logger = logging.getLogger(__name__)
  20. # 创建蓝图 (Blueprint),用于分离路由
  21. bp = Blueprint('routes', __name__)
  22. # 密码加密
  23. def hash_password(password):
  24. return generate_password_hash(password)
  25. def get_db():
  26. """ 获取数据库连接 """
  27. return sqlite3.connect(app.config['DATABASE'])
  28. # 添加一个新的辅助函数来检查数据集大小并触发训练
  29. def check_and_trigger_training(session, dataset_type, dataset_df):
  30. """
  31. 检查当前数据集大小是否跨越新的阈值点并触发训练
  32. Args:
  33. session: 数据库会话
  34. dataset_type: 数据集类型 ('reduce' 或 'reflux')
  35. dataset_df: 数据集 DataFrame
  36. Returns:
  37. tuple: (是否触发训练, 任务ID)
  38. """
  39. try:
  40. # 根据数据集类型选择表
  41. table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
  42. # 获取当前记录数
  43. current_count = session.query(func.count()).select_from(table).scalar()
  44. # 获取新增的记录数(从request.files中获取的DataFrame长度)
  45. new_records = len(dataset_df) # 需要从上层函数传入
  46. # 计算新增数据前的记录数
  47. previous_count = current_count - new_records
  48. # 设置阈值
  49. THRESHOLD = current_app.config['THRESHOLD']
  50. # 计算上一个阈值点(基于新增前的数据量)
  51. last_threshold = previous_count // THRESHOLD * THRESHOLD
  52. # 计算当前所在阈值点
  53. current_threshold = current_count // THRESHOLD * THRESHOLD
  54. # 检查是否跨越了新的阈值点
  55. if current_threshold > last_threshold and current_count >= THRESHOLD:
  56. # 触发异步训练任务
  57. task = train_model_task.delay(
  58. model_type=current_app.config['DEFAULT_MODEL_TYPE'],
  59. model_name=f'auto_trained_{dataset_type}_{current_threshold}',
  60. model_description=f'Auto trained model at {current_threshold} records threshold',
  61. data_type=dataset_type
  62. )
  63. return True, task.id
  64. return False, None
  65. except Exception as e:
  66. logging.error(f"检查并触发训练失败: {str(e)}")
  67. return False, None
  68. @bp.route('/upload-dataset', methods=['POST'])
  69. def upload_dataset():
  70. # 创建 session
  71. Session = sessionmaker(bind=db.engine)
  72. session = Session()
  73. try:
  74. if 'file' not in request.files:
  75. return jsonify({'error': 'No file part'}), 400
  76. file = request.files['file']
  77. if file.filename == '' or not allowed_file(file.filename):
  78. return jsonify({'error': 'No selected file or invalid file type'}), 400
  79. dataset_name = request.form.get('dataset_name')
  80. dataset_description = request.form.get('dataset_description', 'No description provided')
  81. dataset_type = request.form.get('dataset_type')
  82. if not dataset_type:
  83. return jsonify({'error': 'Dataset type is required'}), 400
  84. new_dataset = Datasets(
  85. Dataset_name=dataset_name,
  86. Dataset_description=dataset_description,
  87. Row_count=0,
  88. Status='Datasets_upgraded',
  89. Dataset_type=dataset_type,
  90. Uploaded_at=datetime.now()
  91. )
  92. session.add(new_dataset)
  93. session.commit()
  94. unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
  95. upload_folder = current_app.config['UPLOAD_FOLDER']
  96. file_path = os.path.join(upload_folder, unique_filename)
  97. file.save(file_path)
  98. dataset_df = pd.read_excel(file_path)
  99. new_dataset.Row_count = len(dataset_df)
  100. new_dataset.Status = 'excel_file_saved success'
  101. session.commit()
  102. # 处理列名
  103. dataset_df = clean_column_names(dataset_df)
  104. dataset_df = rename_columns_for_model(dataset_df, dataset_type)
  105. column_types = infer_column_types(dataset_df)
  106. dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
  107. insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
  108. # 根据 dataset_type 决定插入到哪个已有表
  109. if dataset_type == 'reduce':
  110. insert_data_into_existing_table(session, dataset_df, CurrentReduce)
  111. elif dataset_type == 'reflux':
  112. insert_data_into_existing_table(session, dataset_df, CurrentReflux)
  113. session.commit()
  114. # 在完成数据插入后,检查是否需要触发训练
  115. training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
  116. response_data = {
  117. 'message': f'Dataset {dataset_name} uploaded successfully!',
  118. 'dataset_id': new_dataset.Dataset_ID,
  119. 'filename': unique_filename,
  120. 'training_triggered': training_triggered
  121. }
  122. if training_triggered:
  123. response_data['task_id'] = task_id
  124. response_data['message'] += ' Auto-training has been triggered.'
  125. return jsonify(response_data), 201
  126. except Exception as e:
  127. session.rollback()
  128. logging.error('Failed to process the dataset upload:', exc_info=True)
  129. return jsonify({'error': str(e)}), 500
  130. finally:
  131. # 确保 session 总是被关闭
  132. if session:
  133. session.close()
  134. @bp.route('/train-and-save-model', methods=['POST'])
  135. def train_and_save_model_endpoint():
  136. # 创建 sessionmaker 实例
  137. Session = sessionmaker(bind=db.engine)
  138. session = Session()
  139. data = request.get_json()
  140. # 从请求中解析参数
  141. model_type = data.get('model_type')
  142. model_name = data.get('model_name')
  143. model_description = data.get('model_description')
  144. data_type = data.get('data_type')
  145. dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
  146. try:
  147. # 调用训练和保存模型的函数
  148. result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
  149. model_id = result[1] if result else None
  150. # 计算模型评分
  151. if model_id:
  152. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  153. if model_info:
  154. score = calculate_model_score(model_info)
  155. # 更新模型评分
  156. model_info.Performance_score = score
  157. session.commit()
  158. result = {'model_id': model_id, 'model_score': score}
  159. # 返回成功响应
  160. return jsonify({
  161. 'message': 'Model trained and saved successfully',
  162. 'result': result
  163. }), 200
  164. except Exception as e:
  165. session.rollback()
  166. logging.error('Failed to process the model training:', exc_info=True)
  167. return jsonify({
  168. 'error': 'Failed to train and save model',
  169. 'message': str(e)
  170. }), 500
  171. finally:
  172. session.close()
  173. @bp.route('/predict', methods=['POST'])
  174. def predict_route():
  175. # 创建 sessionmaker 实例
  176. Session = sessionmaker(bind=db.engine)
  177. session = Session()
  178. try:
  179. data = request.get_json()
  180. model_id = data.get('model_id') # 提取模型名称
  181. parameters = data.get('parameters', {}) # 提取所有变量
  182. # 根据model_id获取模型Data_type
  183. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  184. if not model_info:
  185. return jsonify({'error': 'Model not found'}), 404
  186. data_type = model_info.Data_type
  187. input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
  188. # 如果为reduce,则不需要传入target_ph
  189. if data_type == 'reduce':
  190. # 获取传入的init_ph、target_ph参数
  191. init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
  192. target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
  193. # 从输入数据中删除'target_pH'列
  194. input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
  195. input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
  196. predictions = predict(session, input_data_rename, model_id) # 调用预测函数
  197. if data_type == 'reduce':
  198. predictions = predictions[0]
  199. # 将预测结果转换为Q
  200. Q = predict_to_Q(predictions, init_ph, target_ph)
  201. predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
  202. print(predictions)
  203. return jsonify({'result': predictions}), 200
  204. except Exception as e:
  205. logging.error('Failed to predict:', exc_info=True)
  206. return jsonify({'error': str(e)}), 400
  207. # 为指定模型计算评分Performance_score,需要提供model_id
  208. @bp.route('/score-model/<int:model_id>', methods=['POST'])
  209. def score_model(model_id):
  210. # 创建 sessionmaker 实例
  211. Session = sessionmaker(bind=db.engine)
  212. session = Session()
  213. try:
  214. model_info = session.query(Models).filter(Models.ModelID == model_id).first()
  215. if not model_info:
  216. return jsonify({'error': 'Model not found'}), 404
  217. # 计算模型评分
  218. score = calculate_model_score(model_info)
  219. # 更新模型记录中的评分
  220. model_info.Performance_score = score
  221. session.commit()
  222. return jsonify({'message': 'Model scored successfully', 'score': score}), 200
  223. except Exception as e:
  224. logging.error('Failed to process the dataset upload:', exc_info=True)
  225. return jsonify({'error': str(e)}), 400
  226. finally:
  227. session.close()
  228. @bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
  229. def delete_dataset_endpoint(dataset_id):
  230. """
  231. 删除数据集的API接口
  232. @param dataset_id: 要删除的数据集ID
  233. @return: JSON响应
  234. """
  235. # 创建 sessionmaker 实例
  236. Session = sessionmaker(bind=db.engine)
  237. session = Session()
  238. try:
  239. # 查询数据集
  240. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  241. if not dataset:
  242. return jsonify({'error': '未找到数据集'}), 404
  243. # 检查是否有模型使用了该数据集
  244. models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
  245. if models_using_dataset:
  246. models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
  247. return jsonify({
  248. 'error': '无法删除数据集,因为以下模型正在使用它',
  249. 'models': models_info
  250. }), 400
  251. # 删除Excel文件
  252. filename = f"dataset_{dataset.Dataset_ID}.xlsx"
  253. file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
  254. if os.path.exists(file_path):
  255. try:
  256. os.remove(file_path)
  257. except OSError as e:
  258. logger.error(f'删除文件失败: {str(e)}')
  259. return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
  260. # 删除数据表
  261. table_name = f"dataset_{dataset.Dataset_ID}"
  262. session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
  263. # 删除数据集记录
  264. session.delete(dataset)
  265. session.commit()
  266. return jsonify({
  267. 'message': '数据集删除成功',
  268. 'deleted_files': [filename]
  269. }), 200
  270. except Exception as e:
  271. session.rollback()
  272. logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
  273. return jsonify({'error': str(e)}), 500
  274. finally:
  275. session.close()
  276. @bp.route('/tables', methods=['GET'])
  277. def list_tables():
  278. engine = db.engine # 使用 db 实例的 engine
  279. inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
  280. table_names = inspector.get_table_names() # 获取所有表名
  281. return jsonify(table_names) # 以 JSON 形式返回表名列表
  282. @bp.route('/models/<int:model_id>', methods=['GET'])
  283. def get_model(model_id):
  284. """
  285. 获取单个模型信息的API接口
  286. @param model_id: 模型ID
  287. @return: JSON响应
  288. """
  289. Session = sessionmaker(bind=db.engine)
  290. session = Session()
  291. try:
  292. model = session.query(Models).filter_by(ModelID=model_id).first()
  293. if model:
  294. return jsonify({
  295. 'ModelID': model.ModelID,
  296. 'Model_name': model.Model_name,
  297. 'Model_type': model.Model_type,
  298. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  299. 'Description': model.Description,
  300. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  301. 'Data_type': model.Data_type
  302. })
  303. else:
  304. return jsonify({'message': '未找到模型'}), 404
  305. except Exception as e:
  306. logger.error(f'获取模型信息失败: {str(e)}')
  307. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  308. finally:
  309. session.close()
  310. @bp.route('/models', methods=['GET'])
  311. def get_all_models():
  312. """
  313. 获取所有模型信息的API接口
  314. @return: JSON响应
  315. """
  316. Session = sessionmaker(bind=db.engine)
  317. session = Session()
  318. try:
  319. models = session.query(Models).all()
  320. if models:
  321. result = [
  322. {
  323. 'ModelID': model.ModelID,
  324. 'Model_name': model.Model_name,
  325. 'Model_type': model.Model_type,
  326. 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
  327. 'Description': model.Description,
  328. 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
  329. 'Data_type': model.Data_type
  330. }
  331. for model in models
  332. ]
  333. return jsonify(result)
  334. else:
  335. return jsonify({'message': '未找到任何模型'}), 404
  336. except Exception as e:
  337. logger.error(f'获取所有模型信息失败: {str(e)}')
  338. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  339. finally:
  340. session.close()
  341. @bp.route('/model-parameters', methods=['GET'])
  342. def get_all_model_parameters():
  343. """
  344. 获取所有模型参数的API接口
  345. @return: JSON响应
  346. """
  347. Session = sessionmaker(bind=db.engine)
  348. session = Session()
  349. try:
  350. parameters = session.query(ModelParameters).all()
  351. if parameters:
  352. result = [
  353. {
  354. 'ParamID': param.ParamID,
  355. 'ModelID': param.ModelID,
  356. 'ParamName': param.ParamName,
  357. 'ParamValue': param.ParamValue
  358. }
  359. for param in parameters
  360. ]
  361. return jsonify(result)
  362. else:
  363. return jsonify({'message': '未找到任何参数'}), 404
  364. except Exception as e:
  365. logger.error(f'获取所有模型参数失败: {str(e)}')
  366. return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
  367. finally:
  368. session.close()
  369. @bp.route('/models/<int:model_id>/parameters', methods=['GET'])
  370. def get_model_parameters(model_id):
  371. try:
  372. model = Models.query.filter_by(ModelID=model_id).first()
  373. if model:
  374. # 获取该模型的所有参数
  375. parameters = [
  376. {
  377. 'ParamID': param.ParamID,
  378. 'ParamName': param.ParamName,
  379. 'ParamValue': param.ParamValue
  380. }
  381. for param in model.parameters
  382. ]
  383. # 返回模型参数信息
  384. return jsonify({
  385. 'ModelID': model.ModelID,
  386. 'ModelName': model.ModelName,
  387. 'ModelType': model.ModelType,
  388. 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
  389. 'Description': model.Description,
  390. 'Parameters': parameters
  391. })
  392. else:
  393. return jsonify({'message': 'Model not found'}), 404
  394. except Exception as e:
  395. return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
  396. # 定义添加数据库记录的 API 接口
  397. @bp.route('/add_item', methods=['POST'])
  398. def add_item():
  399. """
  400. 接收 JSON 格式的请求体,包含表名和要插入的数据。
  401. 尝试将数据插入到指定的表中,并进行字段查重。
  402. :return:
  403. """
  404. try:
  405. # 确保请求体是 JSON 格式
  406. data = request.get_json()
  407. if not data:
  408. raise ValueError("No JSON data provided")
  409. table_name = data.get('table')
  410. item_data = data.get('item')
  411. if not table_name or not item_data:
  412. return jsonify({'error': 'Missing table name or item data'}), 400
  413. # 定义各个表的字段查重规则
  414. duplicate_check_rules = {
  415. 'users': ['email', 'username'],
  416. 'products': ['product_code'],
  417. 'current_reduce': [ 'Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
  418. 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
  419. # 其他表和规则
  420. }
  421. # 获取该表的查重字段
  422. duplicate_columns = duplicate_check_rules.get(table_name)
  423. if not duplicate_columns:
  424. return jsonify({'error': 'No duplicate check rule for this table'}), 400
  425. # 动态构建查询条件,逐一检查是否有重复数据
  426. condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
  427. duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
  428. result = db.session.execute(text(duplicate_query), item_data).fetchone()
  429. if result:
  430. return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
  431. # 动态构建 SQL 语句,进行插入操作
  432. columns = ', '.join(item_data.keys())
  433. placeholders = ', '.join([f":{key}" for key in item_data.keys()])
  434. sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
  435. # 直接执行插入操作,无需显式的事务管理
  436. db.session.execute(text(sql), item_data)
  437. # 提交事务
  438. db.session.commit()
  439. # 返回成功响应
  440. return jsonify({'success': True, 'message': 'Item added successfully'}), 201
  441. except ValueError as e:
  442. return jsonify({'error': str(e)}), 400
  443. except KeyError as e:
  444. return jsonify({'error': f'Missing data field: {e}'}), 400
  445. except sqlite3.IntegrityError as e:
  446. return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
  447. except sqlite3.Error as e:
  448. return jsonify({'error': '数据库错误', 'details': str(e)}), 500
  449. @bp.route('/delete_item', methods=['POST'])
  450. def delete_item():
  451. """
  452. 删除数据库记录的 API 接口
  453. """
  454. data = request.get_json()
  455. table_name = data.get('table')
  456. condition = data.get('condition')
  457. # 检查表名和条件是否提供
  458. if not table_name or not condition:
  459. return jsonify({
  460. "success": False,
  461. "message": "缺少表名或条件参数"
  462. }), 400
  463. # 尝试从条件字符串中解析键和值
  464. try:
  465. key, value = condition.split('=')
  466. key = key.strip() # 去除多余的空格
  467. value = value.strip().strip("'\"") # 去除多余的空格和引号
  468. except ValueError:
  469. return jsonify({
  470. "success": False,
  471. "message": "条件格式错误,应为 'key=value'"
  472. }), 400
  473. # 准备 SQL 删除语句
  474. sql = f"DELETE FROM {table_name} WHERE {key} = :value"
  475. try:
  476. # 使用 SQLAlchemy 执行删除
  477. with db.session.begin():
  478. result = db.session.execute(text(sql), {"value": value})
  479. # 检查是否有记录被删除
  480. if result.rowcount == 0:
  481. return jsonify({
  482. "success": False,
  483. "message": "未找到符合条件的记录"
  484. }), 404
  485. return jsonify({
  486. "success": True,
  487. "message": "记录删除成功"
  488. }), 200
  489. except Exception as e:
  490. return jsonify({
  491. "success": False,
  492. "message": f"删除失败: {e}"
  493. }), 500
  494. # 定义修改数据库记录的 API 接口
  495. @bp.route('/update_item', methods=['PUT'])
  496. def update_record():
  497. """
  498. 接收 JSON 格式的请求体,包含表名和更新的数据。
  499. 尝试更新指定的记录。
  500. """
  501. data = request.get_json()
  502. # 检查必要的数据是否提供
  503. if not data or 'table' not in data or 'item' not in data:
  504. return jsonify({
  505. "success": False,
  506. "message": "请求数据不完整"
  507. }), 400
  508. table_name = data['table']
  509. item = data['item']
  510. # 假设 item 的第一个键是 ID
  511. id_key = next(iter(item.keys())) # 获取第一个键
  512. record_id = item.get(id_key)
  513. if not record_id:
  514. return jsonify({
  515. "success": False,
  516. "message": "缺少记录 ID"
  517. }), 400
  518. # 获取更新的字段和值
  519. updates = {key: value for key, value in item.items() if key != id_key}
  520. if not updates:
  521. return jsonify({
  522. "success": False,
  523. "message": "没有提供需要更新的字段"
  524. }), 400
  525. # 动态构建 SQL
  526. set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
  527. sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
  528. # 添加 ID 到参数
  529. updates['id_value'] = record_id
  530. try:
  531. # 使用 SQLAlchemy 执行更新
  532. with db.session.begin():
  533. result = db.session.execute(text(sql), updates)
  534. # 检查是否有更新的记录
  535. if result.rowcount == 0:
  536. return jsonify({
  537. "success": False,
  538. "message": "未找到要更新的记录"
  539. }), 404
  540. return jsonify({
  541. "success": True,
  542. "message": "数据更新成功"
  543. }), 200
  544. except Exception as e:
  545. # 捕获所有异常并返回
  546. return jsonify({
  547. "success": False,
  548. "message": f"更新失败: {str(e)}"
  549. }), 500
  550. # 定义查询数据库记录的 API 接口
  551. @bp.route('/search/record', methods=['GET'])
  552. def sql_search():
  553. """
  554. 接收 JSON 格式的请求体,包含表名和要查询的 ID。
  555. 尝试查询指定 ID 的记录并返回结果。
  556. :return:
  557. """
  558. try:
  559. data = request.get_json()
  560. # 表名
  561. sql_table = data['table']
  562. # 要搜索的 ID
  563. Id = data['id']
  564. # 连接到数据库
  565. cur = db.cursor()
  566. # 构造查询语句
  567. sql = f"SELECT * FROM {sql_table} WHERE id = ?"
  568. # 执行查询
  569. cur.execute(sql, (Id,))
  570. # 获取查询结果
  571. rows = cur.fetchall()
  572. column_names = [desc[0] for desc in cur.description]
  573. # 检查是否有结果
  574. if not rows:
  575. return jsonify({'error': '未查找到对应数据。'}), 400
  576. # 构造响应数据
  577. results = []
  578. for row in rows:
  579. result = {column_names[i]: row[i] for i in range(len(row))}
  580. results.append(result)
  581. # 关闭游标和数据库连接
  582. cur.close()
  583. db.close()
  584. # 返回 JSON 响应
  585. return jsonify(results), 200
  586. except sqlite3.Error as e:
  587. # 如果发生数据库错误,返回错误信息
  588. return jsonify({'error': str(e)}), 400
  589. except KeyError as e:
  590. # 如果请求数据中缺少必要的键,返回错误信息
  591. return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
  592. # 定义提供数据库列表,用于展示表格的 API 接口
  593. @bp.route('/table', methods=['POST'])
  594. def get_table():
  595. data = request.get_json()
  596. table_name = data.get('table')
  597. if not table_name:
  598. return jsonify({'error': '需要表名'}), 400
  599. try:
  600. # 创建 sessionmaker 实例
  601. Session = sessionmaker(bind=db.engine)
  602. session = Session()
  603. # 动态获取表的元数据
  604. metadata = MetaData()
  605. table = Table(table_name, metadata, autoload_with=db.engine)
  606. # 从数据库中查询所有记录
  607. query = select(table)
  608. result = session.execute(query).fetchall()
  609. # 将结果转换为列表字典形式
  610. rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
  611. # 获取列名
  612. headers = [column.name for column in table.columns]
  613. return jsonify(rows=rows, headers=headers), 200
  614. except Exception as e:
  615. return jsonify({'error': str(e)}), 400
  616. finally:
  617. # 关闭 session
  618. session.close()
  619. @bp.route('/train-model-async', methods=['POST'])
  620. def train_model_async():
  621. """
  622. 异步训练模型的API接口
  623. """
  624. try:
  625. data = request.get_json()
  626. # 从请求中获取参数
  627. model_type = data.get('model_type')
  628. model_name = data.get('model_name')
  629. model_description = data.get('model_description')
  630. data_type = data.get('data_type')
  631. dataset_id = data.get('dataset_id', None)
  632. # 验证必要参数
  633. if not all([model_type, model_name, data_type]):
  634. return jsonify({
  635. 'error': 'Missing required parameters'
  636. }), 400
  637. # 如果提供了dataset_id,验证数据集是否存在
  638. if dataset_id:
  639. Session = sessionmaker(bind=db.engine)
  640. session = Session()
  641. try:
  642. dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
  643. if not dataset:
  644. return jsonify({
  645. 'error': f'Dataset with ID {dataset_id} not found'
  646. }), 404
  647. finally:
  648. session.close()
  649. # 启动异步任务
  650. task = train_model_task.delay(
  651. model_type=model_type,
  652. model_name=model_name,
  653. model_description=model_description,
  654. data_type=data_type,
  655. dataset_id=dataset_id
  656. )
  657. # 返回任务ID
  658. return jsonify({
  659. 'task_id': task.id,
  660. 'message': 'Model training started'
  661. }), 202
  662. except Exception as e:
  663. logging.error('Failed to start async training task:', exc_info=True)
  664. return jsonify({
  665. 'error': str(e)
  666. }), 500
  667. @bp.route('/task-status/<task_id>', methods=['GET'])
  668. def get_task_status(task_id):
  669. """
  670. 获取异步任务状态的API接口
  671. """
  672. try:
  673. task = train_model_task.AsyncResult(task_id)
  674. if task.state == 'PENDING':
  675. response = {
  676. 'state': task.state,
  677. 'status': 'Task is waiting for execution'
  678. }
  679. elif task.state == 'FAILURE':
  680. response = {
  681. 'state': task.state,
  682. 'status': 'Task failed',
  683. 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
  684. }
  685. elif task.state == 'SUCCESS':
  686. response = {
  687. 'state': task.state,
  688. 'status': 'Task completed successfully',
  689. 'result': task.get()
  690. }
  691. else:
  692. response = {
  693. 'state': task.state,
  694. 'status': 'Task is in progress'
  695. }
  696. return jsonify(response), 200
  697. except Exception as e:
  698. return jsonify({
  699. 'error': str(e)
  700. }), 500
  701. @bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
  702. def delete_model_route(model_id):
  703. # 将URL参数转换为布尔值
  704. delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
  705. # 调用原始函数
  706. return delete_model(model_id, delete_dataset=delete_dataset_param)
  707. def delete_model(model_id, delete_dataset=False):
  708. """
  709. 删除指定模型的API接口
  710. @param model_id: 要删除的模型ID
  711. @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
  712. @return: JSON响应
  713. """
  714. Session = sessionmaker(bind=db.engine)
  715. session = Session()
  716. try:
  717. # 查询模型信息
  718. model = session.query(Models).filter_by(ModelID=model_id).first()
  719. if not model:
  720. return jsonify({'error': '未找到指定模型'}), 404
  721. dataset_id = model.DatasetID
  722. # 1. 先删除模型记录
  723. session.delete(model)
  724. session.commit()
  725. # 2. 删除模型文件
  726. model_file = f"rf_model_{model_id}.pkl"
  727. model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
  728. if os.path.exists(model_path):
  729. try:
  730. os.remove(model_path)
  731. except OSError as e:
  732. # 如果删除文件失败,回滚数据库操作
  733. session.rollback()
  734. logger.error(f'删除模型文件失败: {str(e)}')
  735. return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
  736. # 3. 如果需要删除关联的数据集
  737. if delete_dataset and dataset_id:
  738. try:
  739. dataset_response = delete_dataset_endpoint(dataset_id)
  740. if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
  741. # 如果删除数据集失败,回滚之前的操作
  742. session.rollback()
  743. return jsonify({
  744. 'error': '删除关联数据集失败',
  745. 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
  746. }), 500
  747. except Exception as e:
  748. session.rollback()
  749. logger.error(f'删除关联数据集失败: {str(e)}')
  750. return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
  751. response_data = {
  752. 'message': '模型删除成功',
  753. 'deleted_files': [model_file]
  754. }
  755. if delete_dataset:
  756. response_data['dataset_info'] = {
  757. 'dataset_id': dataset_id,
  758. 'message': '关联数据集已删除'
  759. }
  760. return jsonify(response_data), 200
  761. except Exception as e:
  762. session.rollback()
  763. logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
  764. return jsonify({'error': str(e)}), 500
  765. finally:
  766. session.close()
  767. # 添加一个新的API端点来清空指定数据集
  768. @bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
  769. def clear_dataset(data_type):
  770. """
  771. 清空指定类型的数据集并递增计数
  772. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  773. @return: JSON响应
  774. """
  775. # 创建 sessionmaker 实例
  776. Session = sessionmaker(bind=db.engine)
  777. session = Session()
  778. try:
  779. # 根据数据集类型选择表
  780. if data_type == 'reduce':
  781. table = CurrentReduce
  782. table_name = 'current_reduce'
  783. elif data_type == 'reflux':
  784. table = CurrentReflux
  785. table_name = 'current_reflux'
  786. else:
  787. return jsonify({'error': '无效的数据集类型'}), 400
  788. # 清空表内容
  789. session.query(table).delete()
  790. # 重置自增主键计数器
  791. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  792. session.commit()
  793. return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
  794. except Exception as e:
  795. session.rollback()
  796. return jsonify({'error': str(e)}), 500
  797. finally:
  798. session.close()
  799. @bp.route('/login', methods=['POST'])
  800. def login_user():
  801. # 获取前端传来的数据
  802. data = request.get_json()
  803. name = data.get('name') # 用户名
  804. password = data.get('password') # 密码
  805. logger.info(f"Login request received: name={name}")
  806. # 检查用户名和密码是否为空
  807. if not name or not password:
  808. logger.warning("用户名和密码不能为空")
  809. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  810. try:
  811. # 查询数据库验证用户名
  812. query = "SELECT * FROM users WHERE name = :name"
  813. conn = get_db()
  814. user = conn.execute(query, {"name": name}).fetchone()
  815. if not user:
  816. logger.warning(f"用户名 '{name}' 不存在")
  817. return jsonify({"success": False, "message": "用户名不存在"}), 400
  818. # 获取数据库中存储的密码(假设密码是哈希存储的)
  819. stored_password = user[2] # 假设密码存储在数据库的第三列
  820. user_id = user[0] # 假设 id 存储在数据库的第一列
  821. # 校验密码是否正确
  822. if check_password_hash(stored_password, password):
  823. logger.info(f"User '{name}' logged in successfully.")
  824. return jsonify({
  825. "success": True,
  826. "message": "登录成功",
  827. "userId": user_id # 返回用户 ID
  828. })
  829. else:
  830. logger.warning(f"Invalid password for user '{name}'")
  831. return jsonify({"success": False, "message": "用户名或密码错误"}), 400
  832. except Exception as e:
  833. # 记录错误日志并返回错误信息
  834. logger.error(f"Error during login: {e}", exc_info=True)
  835. return jsonify({"success": False, "message": "登录失败"}), 500
  836. # 更新用户信息接口
  837. @bp.route('/update_user', methods=['POST'])
  838. def update_user():
  839. # 获取前端传来的数据
  840. data = request.get_json()
  841. # 打印收到的请求数据
  842. app.logger.info(f"Received data: {data}")
  843. user_id = data.get('userId') # 用户ID
  844. name = data.get('name') # 用户名
  845. old_password = data.get('oldPassword') # 旧密码
  846. new_password = data.get('newPassword') # 新密码
  847. logger.info(f"Update request received: user_id={user_id}, name={name}")
  848. # 校验传入的用户名和密码是否为空
  849. if not name or not old_password:
  850. logger.warning("用户名和旧密码不能为空")
  851. return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
  852. # 新密码和旧密码不能相同
  853. if new_password and old_password == new_password:
  854. logger.warning(f"新密码与旧密码相同:{name}")
  855. return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
  856. try:
  857. # 查询数据库验证用户ID
  858. query = "SELECT * FROM users WHERE id = :user_id"
  859. conn = get_db()
  860. user = conn.execute(query, {"user_id": user_id}).fetchone()
  861. if not user:
  862. logger.warning(f"用户ID '{user_id}' 不存在")
  863. return jsonify({"success": False, "message": "用户不存在"}), 400
  864. # 获取数据库中存储的密码(假设密码是哈希存储的)
  865. stored_password = user[2] # 假设密码存储在数据库的第三列
  866. # 校验旧密码是否正确
  867. if not check_password_hash(stored_password, old_password):
  868. logger.warning(f"旧密码错误:{name}")
  869. return jsonify({"success": False, "message": "旧密码错误"}), 400
  870. # 如果新密码非空,则更新新密码
  871. if new_password:
  872. hashed_new_password = hash_password(new_password)
  873. update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
  874. conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
  875. conn.commit()
  876. logger.info(f"User ID '{user_id}' password updated successfully.")
  877. # 如果用户名发生更改,则更新用户名
  878. if name != user[1]:
  879. update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
  880. conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
  881. conn.commit()
  882. logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
  883. return jsonify({"success": True, "message": "用户信息更新成功"})
  884. except Exception as e:
  885. # 记录错误日志并返回错误信息
  886. logger.error(f"Error updating user: {e}", exc_info=True)
  887. return jsonify({"success": False, "message": "更新失败"}), 500
  888. # 注册用户
  889. @bp.route('/register', methods=['POST'])
  890. def register_user():
  891. # 获取前端传来的数据
  892. data = request.get_json()
  893. name = data.get('name') # 用户名
  894. password = data.get('password') # 密码
  895. logger.info(f"Register request received: name={name}")
  896. # 检查用户名和密码是否为空
  897. if not name or not password:
  898. logger.warning("用户名和密码不能为空")
  899. return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
  900. # 动态获取数据库表的列名
  901. columns = get_column_names('users')
  902. logger.info(f"Database columns for 'users' table: {columns}")
  903. # 检查前端传来的数据是否包含数据库表中所有的必填字段
  904. for column in ['name', 'password']:
  905. if column not in columns:
  906. logger.error(f"缺少必填字段:{column}")
  907. return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
  908. # 对密码进行哈希处理
  909. hashed_password = hash_password(password)
  910. logger.info(f"Password hashed for user: {name}")
  911. # 插入到数据库
  912. try:
  913. # 检查用户是否已经存在
  914. query = "SELECT * FROM users WHERE name = :name"
  915. conn = get_db()
  916. user = conn.execute(query, {"name": name}).fetchone()
  917. if user:
  918. logger.warning(f"用户名 '{name}' 已存在")
  919. return jsonify({"success": False, "message": "用户名已存在"}), 400
  920. # 向数据库插入数据
  921. query = "INSERT INTO users (name, password) VALUES (:name, :password)"
  922. conn.execute(query, {"name": name, "password": hashed_password})
  923. conn.commit()
  924. logger.info(f"User '{name}' registered successfully.")
  925. return jsonify({"success": True, "message": "注册成功"})
  926. except Exception as e:
  927. # 记录错误日志并返回错误信息
  928. logger.error(f"Error registering user: {e}", exc_info=True)
  929. return jsonify({"success": False, "message": "注册失败"}), 500
  930. def get_column_names(table_name):
  931. """
  932. 动态获取数据库表的列名。
  933. """
  934. try:
  935. conn = get_db()
  936. query = f"PRAGMA table_info({table_name});"
  937. result = conn.execute(query).fetchall()
  938. conn.close()
  939. return [row[1] for row in result] # 第二列是列名
  940. except Exception as e:
  941. logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
  942. return []
  943. # 导出数据
  944. @bp.route('/export_data', methods=['GET'])
  945. def export_data():
  946. table_name = request.args.get('table')
  947. file_format = request.args.get('format', 'excel').lower()
  948. if not table_name:
  949. return jsonify({'error': '缺少表名参数'}), 400
  950. if not table_name.isidentifier():
  951. return jsonify({'error': '无效的表名'}), 400
  952. try:
  953. conn = get_db()
  954. query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
  955. table_exists = conn.execute(query, (table_name,)).fetchone()
  956. if not table_exists:
  957. return jsonify({'error': f"表 {table_name} 不存在"}), 404
  958. query = f"SELECT * FROM {table_name};"
  959. df = pd.read_sql(query, conn)
  960. output = BytesIO()
  961. if file_format == 'csv':
  962. df.to_csv(output, index=False, encoding='utf-8')
  963. output.seek(0)
  964. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
  965. elif file_format == 'excel':
  966. df.to_excel(output, index=False, engine='openpyxl')
  967. output.seek(0)
  968. return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
  969. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  970. else:
  971. return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
  972. except Exception as e:
  973. logger.error(f"Error in export_data: {e}", exc_info=True)
  974. return jsonify({'error': str(e)}), 500
  975. # 导入数据接口
  976. @bp.route('/import_data', methods=['POST'])
  977. def import_data():
  978. logger.debug("Import data endpoint accessed.")
  979. if 'file' not in request.files:
  980. logger.error("No file in request.")
  981. return jsonify({'success': False, 'message': '文件缺失'}), 400
  982. file = request.files['file']
  983. table_name = request.form.get('table')
  984. if not table_name:
  985. logger.error("Missing table name parameter.")
  986. return jsonify({'success': False, 'message': '缺少表名参数'}), 400
  987. if file.filename == '':
  988. logger.error("No file selected.")
  989. return jsonify({'success': False, 'message': '未选择文件'}), 400
  990. try:
  991. # 保存文件到临时路径
  992. temp_path = os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
  993. file.save(temp_path)
  994. logger.debug(f"File saved to temporary path: {temp_path}")
  995. # 根据文件类型读取文件
  996. if file.filename.endswith('.xlsx'):
  997. df = pd.read_excel(temp_path)
  998. elif file.filename.endswith('.csv'):
  999. df = pd.read_csv(temp_path)
  1000. else:
  1001. logger.error("Unsupported file format.")
  1002. return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
  1003. # 获取数据库列名
  1004. db_columns = get_column_names(table_name)
  1005. if 'id' in db_columns:
  1006. db_columns.remove('id') # 假设 id 列是自增的,不需要处理
  1007. if not set(db_columns).issubset(set(df.columns)):
  1008. logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
  1009. return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
  1010. # 清洗数据并删除空值行
  1011. df_cleaned = df[db_columns].dropna()
  1012. # 统一数据类型,避免 int 和 float 合并问题
  1013. df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
  1014. # 获取现有的数据
  1015. conn = get_db()
  1016. with conn:
  1017. existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
  1018. # 查找重复数据
  1019. duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
  1020. # 如果有重复数据,删除它们
  1021. df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
  1022. logger.warning(f"Duplicate data detected and removed: {duplicates}")
  1023. # 获取导入前后的数据量
  1024. total_data = len(df_cleaned) + len(duplicates)
  1025. new_data = len(df_cleaned)
  1026. duplicate_data = len(duplicates)
  1027. # 导入不重复的数据
  1028. df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
  1029. logger.debug(f"Imported {new_data} new records into the database.")
  1030. # 删除临时文件
  1031. os.remove(temp_path)
  1032. logger.debug(f"Temporary file removed: {temp_path}")
  1033. # 返回结果
  1034. return jsonify({
  1035. 'success': True,
  1036. 'message': '数据导入成功',
  1037. 'total_data': total_data,
  1038. 'new_data': new_data,
  1039. 'duplicate_data': duplicate_data
  1040. }), 200
  1041. except Exception as e:
  1042. logger.error(f"Import failed: {e}", exc_info=True)
  1043. return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
  1044. # 模板下载接口
  1045. @bp.route('/download_template', methods=['GET'])
  1046. def download_template():
  1047. """
  1048. 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
  1049. """
  1050. table_name = request.args.get('table')
  1051. if not table_name:
  1052. return jsonify({'error': '表名参数缺失'}), 400
  1053. columns = get_column_names(table_name)
  1054. if not columns:
  1055. return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
  1056. # 不包括 ID 列
  1057. if 'id' in columns:
  1058. columns.remove('id')
  1059. df = pd.DataFrame(columns=columns)
  1060. file_format = request.args.get('format', 'excel').lower()
  1061. try:
  1062. if file_format == 'csv':
  1063. output = BytesIO()
  1064. df.to_csv(output, index=False, encoding='utf-8')
  1065. output.seek(0)
  1066. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
  1067. mimetype='text/csv')
  1068. else:
  1069. output = BytesIO()
  1070. df.to_excel(output, index=False, engine='openpyxl')
  1071. output.seek(0)
  1072. return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
  1073. mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
  1074. except Exception as e:
  1075. logger.error(f"Failed to generate template: {e}", exc_info=True)
  1076. return jsonify({'error': '生成模板文件失败'}), 500
  1077. @bp.route('/update-threshold', methods=['POST'])
  1078. def update_threshold():
  1079. """
  1080. 更新训练阈值的API接口
  1081. @body_param threshold: 新的阈值值(整数)
  1082. @return: JSON响应
  1083. """
  1084. try:
  1085. data = request.get_json()
  1086. new_threshold = data.get('threshold')
  1087. # 验证新阈值
  1088. if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
  1089. return jsonify({
  1090. 'error': '无效的阈值值,必须为正数'
  1091. }), 400
  1092. # 更新当前应用的阈值配置
  1093. current_app.config['THRESHOLD'] = int(new_threshold)
  1094. return jsonify({
  1095. 'success': True,
  1096. 'message': f'阈值已更新为 {new_threshold}',
  1097. 'new_threshold': new_threshold
  1098. })
  1099. except Exception as e:
  1100. logging.error(f"更新阈值失败: {str(e)}")
  1101. return jsonify({
  1102. 'error': f'更新阈值失败: {str(e)}'
  1103. }), 500
  1104. @bp.route('/get-threshold', methods=['GET'])
  1105. def get_threshold():
  1106. """
  1107. 获取当前训练阈值的API接口
  1108. @return: JSON响应
  1109. """
  1110. try:
  1111. current_threshold = current_app.config['THRESHOLD']
  1112. default_threshold = current_app.config['DEFAULT_THRESHOLD']
  1113. return jsonify({
  1114. 'current_threshold': current_threshold,
  1115. 'default_threshold': default_threshold
  1116. })
  1117. except Exception as e:
  1118. logging.error(f"获取阈值失败: {str(e)}")
  1119. return jsonify({
  1120. 'error': f'获取阈值失败: {str(e)}'
  1121. }), 500
  1122. @bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
  1123. def set_current_dataset(data_type, dataset_id):
  1124. """
  1125. 将指定数据集设置为current数据集
  1126. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1127. @param dataset_id: 要设置为current的数据集ID
  1128. @return: JSON响应
  1129. """
  1130. Session = sessionmaker(bind=db.engine)
  1131. session = Session()
  1132. try:
  1133. # 验证数据集存在且类型匹配
  1134. dataset = session.query(Datasets)\
  1135. .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
  1136. .first()
  1137. if not dataset:
  1138. return jsonify({
  1139. 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
  1140. }), 404
  1141. # 根据数据类型选择表
  1142. if data_type == 'reduce':
  1143. table = CurrentReduce
  1144. table_name = 'current_reduce'
  1145. elif data_type == 'reflux':
  1146. table = CurrentReflux
  1147. table_name = 'current_reflux'
  1148. else:
  1149. return jsonify({'error': '无效的数据集类型'}), 400
  1150. # 清空current表
  1151. session.query(table).delete()
  1152. # 重置自增主键计数器
  1153. session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
  1154. # 从指定数据集复制数据到current表
  1155. dataset_table_name = f"dataset_{dataset_id}"
  1156. copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
  1157. session.execute(copy_sql)
  1158. session.commit()
  1159. return jsonify({
  1160. 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
  1161. 'dataset_id': dataset_id,
  1162. 'dataset_name': dataset.Dataset_name,
  1163. 'row_count': dataset.Row_count
  1164. }), 200
  1165. except Exception as e:
  1166. session.rollback()
  1167. logger.error(f'设置current数据集失败: {str(e)}')
  1168. return jsonify({'error': str(e)}), 500
  1169. finally:
  1170. session.close()
  1171. @bp.route('/get-model-history/<string:data_type>', methods=['GET'])
  1172. def get_model_history(data_type):
  1173. """
  1174. 获取模型训练历史数据的API接口
  1175. @param data_type: 数据集类型 ('reduce' 或 'reflux')
  1176. @return: JSON响应,包含时间序列的模型性能数据
  1177. """
  1178. Session = sessionmaker(bind=db.engine)
  1179. session = Session()
  1180. try:
  1181. # 查询所有自动生成的数据集,按时间排序
  1182. datasets = session.query(Datasets).filter(
  1183. Datasets.Dataset_type == data_type,
  1184. Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
  1185. ).order_by(Datasets.Uploaded_at).all()
  1186. history_data = []
  1187. for dataset in datasets:
  1188. # 查找对应的自动训练模型
  1189. model = session.query(Models).filter(
  1190. Models.DatasetID == dataset.Dataset_ID,
  1191. Models.Model_name.like(f'auto_trained_{data_type}_%')
  1192. ).first()
  1193. if model and model.Performance_score is not None:
  1194. # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
  1195. created_at = model.Created_at.isoformat() if model.Created_at else None
  1196. history_data.append({
  1197. 'dataset_id': dataset.Dataset_ID,
  1198. 'row_count': dataset.Row_count,
  1199. 'model_id': model.ModelID,
  1200. 'model_name': model.Model_name,
  1201. 'performance_score': float(model.Performance_score),
  1202. 'timestamp': created_at
  1203. })
  1204. # 按时间戳排序
  1205. history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
  1206. # 构建返回数据,分离各个指标序列便于前端绘图
  1207. response_data = {
  1208. 'data_type': data_type,
  1209. 'timestamps': [item['timestamp'] for item in history_data],
  1210. 'row_counts': [item['row_count'] for item in history_data],
  1211. 'performance_scores': [item['performance_score'] for item in history_data],
  1212. 'model_details': history_data # 保留完整数据供前端使用
  1213. }
  1214. return jsonify(response_data), 200
  1215. except Exception as e:
  1216. logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
  1217. return jsonify({'error': str(e)}), 500
  1218. finally:
  1219. session.close()
  1220. @bp.route('/batch-delete-datasets', methods=['POST'])
  1221. def batch_delete_datasets():
  1222. """
  1223. 批量删除数据集的API接口
  1224. @body_param dataset_ids: 要删除的数据集ID列表
  1225. @return: JSON响应
  1226. """
  1227. try:
  1228. data = request.get_json()
  1229. dataset_ids = data.get('dataset_ids', [])
  1230. if not dataset_ids:
  1231. return jsonify({'error': '未提供数据集ID列表'}), 400
  1232. results = {
  1233. 'success': [],
  1234. 'failed': [],
  1235. 'protected': [] # 被模型使用的数据集
  1236. }
  1237. for dataset_id in dataset_ids:
  1238. try:
  1239. # 调用单个删除接口
  1240. response = delete_dataset_endpoint(dataset_id)
  1241. # 解析响应
  1242. if response[1] == 200:
  1243. results['success'].append(dataset_id)
  1244. elif response[1] == 400 and 'models' in response[0].json:
  1245. # 数据集被模型保护
  1246. results['protected'].append({
  1247. 'id': dataset_id,
  1248. 'models': response[0].json['models']
  1249. })
  1250. else:
  1251. results['failed'].append({
  1252. 'id': dataset_id,
  1253. 'reason': response[0].json.get('error', '删除失败')
  1254. })
  1255. except Exception as e:
  1256. logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
  1257. results['failed'].append({
  1258. 'id': dataset_id,
  1259. 'reason': str(e)
  1260. })
  1261. # 构建响应消息
  1262. message = f"成功删除 {len(results['success'])} 个数据集"
  1263. if results['protected']:
  1264. message += f", {len(results['protected'])} 个数据集被保护"
  1265. if results['failed']:
  1266. message += f", {len(results['failed'])} 个数据集删除失败"
  1267. return jsonify({
  1268. 'message': message,
  1269. 'results': results
  1270. }), 200
  1271. except Exception as e:
  1272. logger.error(f'批量删除数据集失败: {str(e)}')
  1273. return jsonify({'error': str(e)}), 500
  1274. @bp.route('/batch-delete-models', methods=['POST'])
  1275. def batch_delete_models():
  1276. """
  1277. 批量删除模型的API接口
  1278. @body_param model_ids: 要删除的模型ID列表
  1279. @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
  1280. @return: JSON响应
  1281. """
  1282. try:
  1283. data = request.get_json()
  1284. model_ids = data.get('model_ids', [])
  1285. delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
  1286. if not model_ids:
  1287. return jsonify({'error': '未提供模型ID列表'}), 400
  1288. results = {
  1289. 'success': [],
  1290. 'failed': [],
  1291. 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
  1292. }
  1293. for model_id in model_ids:
  1294. try:
  1295. # 调用单个删除接口
  1296. response = delete_model(model_id, delete_dataset=delete_datasets)
  1297. # 解析响应
  1298. if response[1] == 200:
  1299. results['success'].append(model_id)
  1300. # 如果删除了关联数据集,记录数据集ID
  1301. if 'dataset_info' in response[0].json:
  1302. results['datasets_deleted'].append(
  1303. response[0].json['dataset_info']['dataset_id']
  1304. )
  1305. else:
  1306. results['failed'].append({
  1307. 'id': model_id,
  1308. 'reason': response[0].json.get('error', '删除失败')
  1309. })
  1310. except Exception as e:
  1311. logger.error(f'删除模型 {model_id} 失败: {str(e)}')
  1312. results['failed'].append({
  1313. 'id': model_id,
  1314. 'reason': str(e)
  1315. })
  1316. # 构建响应消息
  1317. message = f"成功删除 {len(results['success'])} 个模型"
  1318. if results['datasets_deleted']:
  1319. message += f", {len(results['datasets_deleted'])} 个关联数据集"
  1320. if results['failed']:
  1321. message += f", {len(results['failed'])} 个模型删除失败"
  1322. return jsonify({
  1323. 'message': message,
  1324. 'results': results
  1325. }), 200
  1326. except Exception as e:
  1327. logger.error(f'批量删除模型失败: {str(e)}')
  1328. return jsonify({'error': str(e)}), 500