Преглед изворни кода

更新 'api/app/routes.py'

优化models,login接口,添加/switch-model,/logout,/software-intro,/software-intro,/upload-image,/uploads
qw пре 3 месеци
родитељ
комит
a01fab0d49
1 измењених фајлова са 1762 додато и 10 уклоњено
  1. 1762 10
      api/app/routes.py

+ 1762 - 10
api/app/routes.py

@@ -1,25 +1,1777 @@
-from flask import Blueprint, request, jsonify
-from .model import predict
+import sqlite3
+from io import BytesIO
+from flask import Blueprint, request, jsonify,send_from_directory, current_app, send_file, session
+from werkzeug.security import check_password_hash, generate_password_hash
+from werkzeug.utils import secure_filename
+
+from .model import predict, train_and_save_model, calculate_model_score
 import pandas as pd
+from . import db  # 从 app 包导入 db 实例
+from sqlalchemy.engine.reflection import Inspector
+from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
+import os
+from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
+    clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
+    predict_to_Q, Q_to_t_ha, create_kriging
+from sqlalchemy.orm import sessionmaker
+import logging
+from sqlalchemy import text, select, MetaData, Table, func
+from .tasks import train_model_task
+from datetime import datetime
+import uuid
 
+# 配置日志
+logging.basicConfig(level=logging.DEBUG)
+logger = logging.getLogger(__name__)
 # 创建蓝图 (Blueprint),用于分离路由
 bp = Blueprint('routes', __name__)
 
+# 封装数据库连接函数
+def get_db_connection():
+    return sqlite3.connect('software_intro.db')
+
+# 密码加密
+def hash_password(password):
+    return generate_password_hash(password)
+
+
+def get_db():
+    """ 获取数据库连接 """
+    return sqlite3.connect(current_app.config['DATABASE'])
+
+
+# 添加一个新的辅助函数来检查数据集大小并触发训练
+def check_and_trigger_training(session, dataset_type, dataset_df):
+    """
+    检查当前数据集大小是否跨越新的阈值点并触发训练
+    
+    Args:
+        session: 数据库会话
+        dataset_type: 数据集类型 ('reduce' 或 'reflux')
+        dataset_df: 数据集 DataFrame
+        
+    Returns:
+        tuple: (是否触发训练, 任务ID)
+    """
+    try:
+        # 根据数据集类型选择表
+        table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
+        
+        # 获取当前记录数
+        current_count = session.query(func.count()).select_from(table).scalar()
+        
+        # 获取新增的记录数(从request.files中获取的DataFrame长度)
+        new_records = len(dataset_df)  # 需要从上层函数传入
+        
+        # 计算新增数据前的记录数
+        previous_count = current_count - new_records
+        
+        # 设置阈值
+        THRESHOLD = current_app.config['THRESHOLD']
+        
+        # 计算上一个阈值点(基于新增前的数据量)
+        last_threshold = previous_count // THRESHOLD * THRESHOLD
+        # 计算当前所在阈值点
+        current_threshold = current_count // THRESHOLD * THRESHOLD
+        
+        # 检查是否跨越了新的阈值点
+        if current_threshold > last_threshold and current_count >= THRESHOLD:
+            # 触发异步训练任务
+            task = train_model_task.delay(
+                model_type=current_app.config['DEFAULT_MODEL_TYPE'],
+                model_name=f'auto_trained_{dataset_type}_{current_threshold}',
+                model_description=f'Auto trained model at {current_threshold} records threshold',
+                data_type=dataset_type
+            )
+            return True, task.id
+            
+        return False, None
+        
+    except Exception as e:
+        logging.error(f"检查并触发训练失败: {str(e)}")
+        return False, None
+
+
+@bp.route('/upload-dataset', methods=['POST'])
+def upload_dataset():
+    # 创建 session
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        if 'file' not in request.files:
+            return jsonify({'error': 'No file part'}), 400
+        file = request.files['file']
+        if file.filename == '' or not allowed_file(file.filename):
+            return jsonify({'error': 'No selected file or invalid file type'}), 400
+
+        dataset_name = request.form.get('dataset_name')
+        dataset_description = request.form.get('dataset_description', 'No description provided')
+        dataset_type = request.form.get('dataset_type')
+        if not dataset_type:
+            return jsonify({'error': 'Dataset type is required'}), 400
+
+        new_dataset = Datasets(
+            Dataset_name=dataset_name,
+            Dataset_description=dataset_description,
+            Row_count=0,
+            Status='Datasets_upgraded',
+            Dataset_type=dataset_type,
+            Uploaded_at=datetime.now()
+        )
+        session.add(new_dataset)
+        session.commit()
+
+        unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
+        upload_folder = current_app.config['UPLOAD_FOLDER']
+        file_path = os.path.join(upload_folder, unique_filename)
+        file.save(file_path)
+
+        dataset_df = pd.read_excel(file_path)
+        new_dataset.Row_count = len(dataset_df)
+        new_dataset.Status = 'excel_file_saved success'
+        session.commit()
+
+        # 处理列名
+        dataset_df = clean_column_names(dataset_df)
+        dataset_df = rename_columns_for_model(dataset_df, dataset_type)
+
+        column_types = infer_column_types(dataset_df)
+        dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
+        insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
+
+        # 根据 dataset_type 决定插入到哪个已有表
+        if dataset_type == 'reduce':
+            insert_data_into_existing_table(session, dataset_df, CurrentReduce)
+        elif dataset_type == 'reflux':
+            insert_data_into_existing_table(session, dataset_df, CurrentReflux)
+
+        session.commit()
+
+        # 在完成数据插入后,检查是否需要触发训练
+        training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
+
+        response_data = {
+            'message': f'Dataset {dataset_name} uploaded successfully!',
+            'dataset_id': new_dataset.Dataset_ID,
+            'filename': unique_filename,
+            'training_triggered': training_triggered
+        }
+        
+        if training_triggered:
+            response_data['task_id'] = task_id
+            response_data['message'] += ' Auto-training has been triggered.'
+
+        return jsonify(response_data), 201
+
+    except Exception as e:
+        session.rollback()
+        logging.error('Failed to process the dataset upload:', exc_info=True)
+        return jsonify({'error': str(e)}), 500
+        
+    finally:
+        # 确保 session 总是被关闭
+        if session:
+            session.close()
+
+
+@bp.route('/train-and-save-model', methods=['POST'])
+def train_and_save_model_endpoint():
+    # 创建 sessionmaker 实例
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+
+    data = request.get_json()
+    # 从请求中解析参数
+    model_type = data.get('model_type')
+    model_name = data.get('model_name')
+    model_description = data.get('model_description')
+    data_type = data.get('data_type')
+    dataset_id = data.get('dataset_id', None)  # 默认为 None,如果未提供
+
+    try:
+        # 调用训练和保存模型的函数
+        result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
+        
+        model_id = result[1] if result else None
+        
+        # 计算模型评分
+        if model_id:
+            model_info = session.query(Models).filter(Models.ModelID == model_id).first()
+            if model_info:
+                score = calculate_model_score(model_info)
+                # 更新模型评分
+                model_info.Performance_score = score
+                session.commit()
+                result = {'model_id': model_id, 'model_score': score}
+
+        # 返回成功响应
+        return jsonify({
+            'message': 'Model trained and saved successfully', 
+            'result': result
+        }), 200
+
+    except Exception as e:
+        session.rollback()
+        logging.error('Failed to process the model training:', exc_info=True)
+        return jsonify({
+            'error': 'Failed to train and save model', 
+            'message': str(e)
+        }), 500
+    finally:
+        session.close()
+
 
-# 路由:预测
 @bp.route('/predict', methods=['POST'])
 def predict_route():
+    # 创建 sessionmaker 实例
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    try:
+        data = request.get_json()
+        model_id = data.get('model_id')          # 提取模型名称
+        parameters = data.get('parameters', {})  # 提取所有变量
+
+        # 根据model_id获取模型Data_type
+        model_info = session.query(Models).filter(Models.ModelID == model_id).first()
+        if not model_info:
+            return jsonify({'error': 'Model not found'}), 404
+        data_type = model_info.Data_type
+
+        input_data = pd.DataFrame([parameters])  # 转换参数为DataFrame
+        # 如果为reduce,则不需要传入target_ph
+        if data_type == 'reduce':
+            # 获取传入的init_ph、target_ph参数
+            init_ph = float(parameters.get('init_pH', 0.0))  # 默认值为0.0,防止None导致错误
+            target_ph = float(parameters.get('target_pH', 0.0))  # 默认值为0.0,防止None导致错误
+
+            # 从输入数据中删除'target_pH'列
+            input_data = input_data.drop('target_pH', axis=1, errors='ignore')  # 使用errors='ignore'防止列不存在时出错
+
+        input_data_rename = rename_columns_for_model_predict(input_data, data_type)  # 重命名列名以匹配模型字段
+        predictions = predict(session, input_data_rename, model_id)  # 调用预测函数
+
+        if data_type == 'reduce':
+            predictions = predictions[0]
+            # 将预测结果转换为Q
+            Q = predict_to_Q(predictions, init_ph, target_ph)
+            predictions = Q_to_t_ha(Q)  # 将Q转换为t/ha
+
+            print(predictions)
+
+        return jsonify({'result': predictions}), 200
+    except Exception as e:
+        logging.error('Failed to predict:', exc_info=True)
+        return jsonify({'error': str(e)}), 400
+
+
+# 为指定模型计算评分Performance_score,需要提供model_id
+@bp.route('/score-model/<int:model_id>', methods=['POST'])
+def score_model(model_id):
+    # 创建 sessionmaker 实例
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    try:
+        model_info = session.query(Models).filter(Models.ModelID == model_id).first()
+        if not model_info:
+            return jsonify({'error': 'Model not found'}), 404
+
+        # 计算模型评分
+        score = calculate_model_score(model_info)
+
+        # 更新模型记录中的评分
+        model_info.Performance_score = score
+        session.commit()
+
+        return jsonify({'message': 'Model scored successfully', 'score': score}), 200
+    except Exception as e:
+        logging.error('Failed to process the dataset upload:', exc_info=True)
+        return jsonify({'error': str(e)}), 400
+    finally:
+        session.close()
+
+
+@bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
+def delete_dataset_endpoint(dataset_id):
+    """
+    删除数据集的API接口
+    
+    @param dataset_id: 要删除的数据集ID
+    @return: JSON响应
+    """
+    # 创建 sessionmaker 实例
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    try:
+        # 查询数据集
+        dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
+        if not dataset:
+            return jsonify({'error': '未找到数据集'}), 404
+
+        # 检查是否有模型使用了该数据集
+        models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
+        if models_using_dataset:
+            models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
+            return jsonify({
+                'error': '无法删除数据集,因为以下模型正在使用它',
+                'models': models_info
+            }), 400
+
+        # 删除Excel文件
+        filename = f"dataset_{dataset.Dataset_ID}.xlsx"
+        file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
+        if os.path.exists(file_path):
+            try:
+                os.remove(file_path)
+            except OSError as e:
+                logger.error(f'删除文件失败: {str(e)}')
+                return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
+
+        # 删除数据表
+        table_name = f"dataset_{dataset.Dataset_ID}"
+        session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
+
+        # 删除数据集记录
+        session.delete(dataset)
+        session.commit()
+
+        return jsonify({
+            'message': '数据集删除成功',
+            'deleted_files': [filename]
+        }), 200
+
+    except Exception as e:
+        session.rollback()
+        logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
+        return jsonify({'error': str(e)}), 500
+    finally:
+        session.close()
+
+
+@bp.route('/tables', methods=['GET'])
+def list_tables():
+    engine = db.engine  # 使用 db 实例的 engine
+    inspector = Inspector.from_engine(engine)  # 创建 Inspector 对象
+    table_names = inspector.get_table_names()  # 获取所有表名
+    return jsonify(table_names)  # 以 JSON 形式返回表名列表
+
+
+@bp.route('/models/<int:model_id>', methods=['GET'])
+def get_model(model_id):
+    """
+    获取单个模型信息的API接口
+    
+    @param model_id: 模型ID
+    @return: JSON响应
+    """
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        model = session.query(Models).filter_by(ModelID=model_id).first()
+        if model:
+            return jsonify({
+                'ModelID': model.ModelID,
+                'Model_name': model.Model_name,
+                'Model_type': model.Model_type,
+                'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
+                'Description': model.Description,
+                'Performance_score': float(model.Performance_score) if model.Performance_score else None,
+                'Data_type': model.Data_type
+            })
+        else:
+            return jsonify({'message': '未找到模型'}), 404
+            
+    except Exception as e:
+        logger.error(f'获取模型信息失败: {str(e)}')
+        return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
+        
+    finally:
+        session.close()
+
+@bp.route('/model-parameters', methods=['GET'])
+def get_all_model_parameters():
+    """
+    获取所有模型参数的API接口
+    
+    @return: JSON响应
+    """
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        parameters = session.query(ModelParameters).all()
+        if parameters:
+            result = [
+                {
+                    'ParamID': param.ParamID,
+                    'ModelID': param.ModelID,
+                    'ParamName': param.ParamName,
+                    'ParamValue': param.ParamValue
+                }
+                for param in parameters
+            ]
+            return jsonify(result)
+        else:
+            return jsonify({'message': '未找到任何参数'}), 404
+            
+    except Exception as e:
+        logger.error(f'获取所有模型参数失败: {str(e)}')
+        return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
+        
+    finally:
+        session.close()
+
+
+@bp.route('/models/<int:model_id>/parameters', methods=['GET'])
+def get_model_parameters(model_id):
+    try:
+        model = Models.query.filter_by(ModelID=model_id).first()
+        if model:
+            # 获取该模型的所有参数
+            parameters = [
+                {
+                    'ParamID': param.ParamID,
+                    'ParamName': param.ParamName,
+                    'ParamValue': param.ParamValue
+                }
+                for param in model.parameters
+            ]
+            
+            # 返回模型参数信息
+            return jsonify({
+                'ModelID': model.ModelID,
+                'ModelName': model.ModelName,
+                'ModelType': model.ModelType,
+                'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
+                'Description': model.Description,
+                'Parameters': parameters
+            })
+        else:
+            return jsonify({'message': 'Model not found'}), 404
+    except Exception as e:
+        return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
+
+
+# 定义添加数据库记录的 API 接口
+@bp.route('/add_item', methods=['POST'])
+def add_item():
+    """
+    接收 JSON 格式的请求体,包含表名和要插入的数据。
+    尝试将数据插入到指定的表中,并进行字段查重。
+    :return:
+    """
+    try:
+        # 确保请求体是 JSON 格式
+        data = request.get_json()
+        if not data:
+            raise ValueError("No JSON data provided")
+
+        table_name = data.get('table')
+        item_data = data.get('item')
+
+        if not table_name or not item_data:
+            return jsonify({'error': 'Missing table name or item data'}), 400
+
+        # 定义各个表的字段查重规则
+        duplicate_check_rules = {
+            'users': ['email', 'username'],
+            'products': ['product_code'],
+            'current_reduce': [ 'Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
+            'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
+            # 其他表和规则
+        }
+
+        # 获取该表的查重字段
+        duplicate_columns = duplicate_check_rules.get(table_name)
+
+        if not duplicate_columns:
+            return jsonify({'error': 'No duplicate check rule for this table'}), 400
+
+        # 动态构建查询条件,逐一检查是否有重复数据
+        condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
+        duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
+
+        result = db.session.execute(text(duplicate_query), item_data).fetchone()
+
+        if result:
+            return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
+
+        # 动态构建 SQL 语句,进行插入操作
+        columns = ', '.join(item_data.keys())
+        placeholders = ', '.join([f":{key}" for key in item_data.keys()])
+        sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
+
+        # 直接执行插入操作,无需显式的事务管理
+        db.session.execute(text(sql), item_data)
+
+        # 提交事务
+        db.session.commit()
+
+        # 返回成功响应
+        return jsonify({'success': True, 'message': 'Item added successfully'}), 201
+
+    except ValueError as e:
+        return jsonify({'error': str(e)}), 400
+    except KeyError as e:
+        return jsonify({'error': f'Missing data field: {e}'}), 400
+    except sqlite3.IntegrityError as e:
+        return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
+    except sqlite3.Error as e:
+        return jsonify({'error': '数据库错误', 'details': str(e)}), 500
+
+
+@bp.route('/delete_item', methods=['POST'])
+def delete_item():
+    """
+    删除数据库记录的 API 接口
+    """
+    data = request.get_json()
+    table_name = data.get('table')
+    condition = data.get('condition')
+
+    # 检查表名和条件是否提供
+    if not table_name or not condition:
+        return jsonify({
+            "success": False,
+            "message": "缺少表名或条件参数"
+        }), 400
+
+    # 尝试从条件字符串中解析键和值
+    try:
+        key, value = condition.split('=')
+        key = key.strip()  # 去除多余的空格
+        value = value.strip().strip("'\"")  # 去除多余的空格和引号
+    except ValueError:
+        return jsonify({
+            "success": False,
+            "message": "条件格式错误,应为 'key=value'"
+        }), 400
+
+    # 准备 SQL 删除语句
+    sql = f"DELETE FROM {table_name} WHERE {key} = :value"
+
+    try:
+        # 使用 SQLAlchemy 执行删除
+        with db.session.begin():
+            result = db.session.execute(text(sql), {"value": value})
+
+        # 检查是否有记录被删除
+        if result.rowcount == 0:
+            return jsonify({
+                "success": False,
+                "message": "未找到符合条件的记录"
+            }), 404
+
+        return jsonify({
+            "success": True,
+            "message": "记录删除成功"
+        }), 200
+
+    except Exception as e:
+        return jsonify({
+            "success": False,
+            "message": f"删除失败: {e}"
+        }), 500
+
+# 定义修改数据库记录的 API 接口
+@bp.route('/update_item', methods=['PUT'])
+def update_record():
+    """
+    接收 JSON 格式的请求体,包含表名和更新的数据。
+    尝试更新指定的记录。
+    """
+    data = request.get_json()
+
+    # 检查必要的数据是否提供
+    if not data or 'table' not in data or 'item' not in data:
+        return jsonify({
+            "success": False,
+            "message": "请求数据不完整"
+        }), 400
+
+    table_name = data['table']
+    item = data['item']
+
+    # 假设 item 的第一个键是 ID
+    id_key = next(iter(item.keys()))  # 获取第一个键
+    record_id = item.get(id_key)
+
+    if not record_id:
+        return jsonify({
+            "success": False,
+            "message": "缺少记录 ID"
+        }), 400
+
+    # 获取更新的字段和值
+    updates = {key: value for key, value in item.items() if key != id_key}
+
+    if not updates:
+        return jsonify({
+            "success": False,
+            "message": "没有提供需要更新的字段"
+        }), 400
+
+    # 动态构建 SQL
+    set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
+    sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
+
+    # 添加 ID 到参数
+    updates['id_value'] = record_id
+
+    try:
+        # 使用 SQLAlchemy 执行更新
+        with db.session.begin():
+            result = db.session.execute(text(sql), updates)
+
+        # 检查是否有更新的记录
+        if result.rowcount == 0:
+            return jsonify({
+                "success": False,
+                "message": "未找到要更新的记录"
+            }), 404
+
+        return jsonify({
+            "success": True,
+            "message": "数据更新成功"
+        }), 200
+
+    except Exception as e:
+        # 捕获所有异常并返回
+        return jsonify({
+            "success": False,
+            "message": f"更新失败: {str(e)}"
+        }), 500
+
+
+# 定义查询数据库记录的 API 接口
+@bp.route('/search/record', methods=['GET'])
+def sql_search():
+    """
+    接收 JSON 格式的请求体,包含表名和要查询的 ID。
+    尝试查询指定 ID 的记录并返回结果。
+    :return:
+    """
     try:
-        # 从请求中获取数据
         data = request.get_json()
 
-        # 将数据转为 pandas DataFrame,确保数据列名一致
-        input_data = pd.DataFrame([data])
+        # 表名
+        sql_table = data['table']
+
+        # 要搜索的 ID
+        Id = data['id']
+
+        # 连接到数据库
+        cur = db.cursor()
+
+        # 构造查询语句
+        sql = f"SELECT * FROM {sql_table} WHERE id = ?"
+
+        # 执行查询
+        cur.execute(sql, (Id,))
+
+        # 获取查询结果
+        rows = cur.fetchall()
+        column_names = [desc[0] for desc in cur.description]
+
+        # 检查是否有结果
+        if not rows:
+            return jsonify({'error': '未查找到对应数据。'}), 400
+
+        # 构造响应数据
+        results = []
+        for row in rows:
+            result = {column_names[i]: row[i] for i in range(len(row))}
+            results.append(result)
+
+        # 关闭游标和数据库连接
+        cur.close()
+        db.close()
+
+        # 返回 JSON 响应
+        return jsonify(results), 200
+
+    except sqlite3.Error as e:
+        # 如果发生数据库错误,返回错误信息
+        return jsonify({'error': str(e)}), 400
+    except KeyError as e:
+        # 如果请求数据中缺少必要的键,返回错误信息
+        return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
+
+
+# 定义提供数据库列表,用于展示表格的 API 接口
+@bp.route('/table', methods=['POST'])
+def get_table():
+    data = request.get_json()
+    table_name = data.get('table')
+    if not table_name:
+        return jsonify({'error': '需要表名'}), 400
+
+    try:
+        # 创建 sessionmaker 实例
+        Session = sessionmaker(bind=db.engine)
+        session = Session()
 
-        # 调用模型进行预测
-        predictions = predict(input_data)
+        # 动态获取表的元数据
+        metadata = MetaData()
+        table = Table(table_name, metadata, autoload_with=db.engine)
+
+        # 从数据库中查询所有记录
+        query = select(table)
+        result = session.execute(query).fetchall()
+
+        # 将结果转换为列表字典形式
+        rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
+
+        # 获取列名
+        headers = [column.name for column in table.columns]
+
+        return jsonify(rows=rows, headers=headers), 200
 
-        # 返回预测结果
-        return jsonify({'predictions': predictions}), 200
     except Exception as e:
         return jsonify({'error': str(e)}), 400
+    finally:
+        # 关闭 session
+        session.close()
+
+
+@bp.route('/train-model-async', methods=['POST'])
+def train_model_async():
+    """
+    异步训练模型的API接口
+    """
+    try:
+        data = request.get_json()
+        
+        # 从请求中获取参数
+        model_type = data.get('model_type')
+        model_name = data.get('model_name')
+        model_description = data.get('model_description')
+        data_type = data.get('data_type')
+        dataset_id = data.get('dataset_id', None)
+        
+        # 验证必要参数
+        if not all([model_type, model_name, data_type]):
+            return jsonify({
+                'error': 'Missing required parameters'
+            }), 400
+            
+        # 如果提供了dataset_id,验证数据集是否存在
+        if dataset_id:
+            Session = sessionmaker(bind=db.engine)
+            session = Session()
+            try:
+                dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
+                if not dataset:
+                    return jsonify({
+                        'error': f'Dataset with ID {dataset_id} not found'
+                    }), 404
+            finally:
+                session.close()
+            
+        # 启动异步任务
+        task = train_model_task.delay(
+            model_type=model_type,
+            model_name=model_name,
+            model_description=model_description,
+            data_type=data_type,
+            dataset_id=dataset_id
+        )
+        
+        # 返回任务ID
+        return jsonify({
+            'task_id': task.id,
+            'message': 'Model training started'
+        }), 202
+        
+    except Exception as e:
+        logging.error('Failed to start async training task:', exc_info=True)
+        return jsonify({
+            'error': str(e)
+        }), 500
+
+
+@bp.route('/task-status/<task_id>', methods=['GET'])
+def get_task_status(task_id):
+    """
+    获取异步任务状态的API接口
+    """
+    try:
+        task = train_model_task.AsyncResult(task_id)
+        
+        if task.state == 'PENDING':
+            response = {
+                'state': task.state,
+                'status': 'Task is waiting for execution'
+            }
+        elif task.state == 'FAILURE':
+            response = {
+                'state': task.state,
+                'status': 'Task failed',
+                'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
+            }
+        elif task.state == 'SUCCESS':
+            response = {
+                'state': task.state,
+                'status': 'Task completed successfully',
+                'result': task.get()
+            }
+        else:
+            response = {
+                'state': task.state,
+                'status': 'Task is in progress'
+            }
+            
+        return jsonify(response), 200
+        
+    except Exception as e:
+        return jsonify({
+            'error': str(e)
+        }), 500
+
+
+@bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
+def delete_model_route(model_id):
+    # 将URL参数转换为布尔值
+    delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
+    
+    # 调用原始函数
+    return delete_model(model_id, delete_dataset=delete_dataset_param)
+
+def delete_model(model_id, delete_dataset=False):
+    """
+    删除指定模型的API接口
+    
+    @param model_id: 要删除的模型ID
+    @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
+    @return: JSON响应
+    """
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        # 查询模型信息
+        model = session.query(Models).filter_by(ModelID=model_id).first()
+        if not model:
+            return jsonify({'error': '未找到指定模型'}), 404
+        
+        dataset_id = model.DatasetID
+        
+        # 1. 先删除模型记录
+        session.delete(model)
+        session.commit()
+        
+        # 2. 删除模型文件
+        model_file = f"rf_model_{model_id}.pkl"
+        model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
+        if os.path.exists(model_path):
+            try:
+                os.remove(model_path)
+            except OSError as e:
+                # 如果删除文件失败,回滚数据库操作
+                session.rollback()
+                logger.error(f'删除模型文件失败: {str(e)}')
+                return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
+
+        # 3. 如果需要删除关联的数据集
+        if delete_dataset and dataset_id:
+            try:
+                dataset_response = delete_dataset_endpoint(dataset_id)
+                if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
+                    # 如果删除数据集失败,回滚之前的操作
+                    session.rollback()
+                    return jsonify({
+                        'error': '删除关联数据集失败',
+                        'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
+                    }), 500
+            except Exception as e:
+                session.rollback()
+                logger.error(f'删除关联数据集失败: {str(e)}')
+                return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
+
+        response_data = {
+            'message': '模型删除成功',
+            'deleted_files': [model_file]
+        }
+        
+        if delete_dataset:
+            response_data['dataset_info'] = {
+                'dataset_id': dataset_id,
+                'message': '关联数据集已删除'
+            }
+        return jsonify(response_data), 200
+        
+    except Exception as e:
+        session.rollback()
+        logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
+        return jsonify({'error': str(e)}), 500
+    finally:
+        session.close()
+
+
+# 添加一个新的API端点来清空指定数据集
+@bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
+def clear_dataset(data_type):
+    """
+    清空指定类型的数据集并递增计数
+
+    @param data_type: 数据集类型 ('reduce' 或 'reflux')
+    @return: JSON响应
+    """
+    # 创建 sessionmaker 实例
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        # 根据数据集类型选择表
+        if data_type == 'reduce':
+            table = CurrentReduce
+            table_name = 'current_reduce'
+        elif data_type == 'reflux':
+            table = CurrentReflux
+            table_name = 'current_reflux'
+        else:
+            return jsonify({'error': '无效的数据集类型'}), 400
+        
+        # 清空表内容
+        session.query(table).delete()
+        
+        # 重置自增主键计数器
+        session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
+                
+        session.commit()
+        
+        return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
+    
+    except Exception as e:
+        session.rollback()
+        return jsonify({'error': str(e)}), 500
+    
+    finally:
+        session.close()
+
+# 更新用户信息接口
+@bp.route('/update_user', methods=['POST'])
+def update_user():
+    # 获取前端传来的数据
+    data = request.get_json()
+
+    # 打印收到的请求数据
+    current_app.logger.info(f"Received data: {data}")
+
+    user_id = data.get('userId')  # 用户ID
+    name = data.get('name')  # 用户名
+    old_password = data.get('oldPassword')  # 旧密码
+    new_password = data.get('newPassword')  # 新密码
+
+    logger.info(f"Update request received: user_id={user_id}, name={name}")
+
+    # 校验传入的用户名和密码是否为空
+    if not name or not old_password:
+        logger.warning("用户名和旧密码不能为空")
+        return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
+
+    # 新密码和旧密码不能相同
+    if new_password and old_password == new_password:
+        logger.warning(f"新密码与旧密码相同:{name}")
+        return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
+
+    try:
+        # 查询数据库验证用户ID
+        query = "SELECT * FROM users WHERE id = :user_id"
+        conn = get_db()
+        user = conn.execute(query, {"user_id": user_id}).fetchone()
+
+        if not user:
+            logger.warning(f"用户ID '{user_id}' 不存在")
+            return jsonify({"success": False, "message": "用户不存在"}), 400
+
+        # 获取数据库中存储的密码(假设密码是哈希存储的)
+        stored_password = user[2]  # 假设密码存储在数据库的第三列
+
+        # 校验旧密码是否正确
+        if not check_password_hash(stored_password, old_password):
+            logger.warning(f"旧密码错误:{name}")
+            return jsonify({"success": False, "message": "旧密码错误"}), 400
+
+        # 如果新密码非空,则更新新密码
+        if new_password:
+            hashed_new_password = hash_password(new_password)
+            update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
+            conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
+            conn.commit()
+            logger.info(f"User ID '{user_id}' password updated successfully.")
+
+        # 如果用户名发生更改,则更新用户名
+        if name != user[1]:
+            update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
+            conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
+            conn.commit()
+            logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
+
+        return jsonify({"success": True, "message": "用户信息更新成功"})
+
+    except Exception as e:
+        # 记录错误日志并返回错误信息
+        logger.error(f"Error updating user: {e}", exc_info=True)
+        return jsonify({"success": False, "message": "更新失败"}), 500
+
+
+# 注册用户
+@bp.route('/register', methods=['POST'])
+def register_user():
+    # 获取前端传来的数据
+    data = request.get_json()
+    name = data.get('name')  # 用户名
+    password = data.get('password')  # 密码
+
+    logger.info(f"Register request received: name={name}")
+
+    # 检查用户名和密码是否为空
+    if not name or not password:
+        logger.warning("用户名和密码不能为空")
+        return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
+
+    # 动态获取数据库表的列名
+    columns = get_column_names('users')
+    logger.info(f"Database columns for 'users' table: {columns}")
+
+    # 检查前端传来的数据是否包含数据库表中所有的必填字段
+    for column in ['name', 'password']:
+        if column not in columns:
+            logger.error(f"缺少必填字段:{column}")
+            return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
+
+    # 对密码进行哈希处理
+    hashed_password = hash_password(password)
+    logger.info(f"Password hashed for user: {name}")
+
+    # 插入到数据库
+    try:
+        # 检查用户是否已经存在
+        query = "SELECT * FROM users WHERE name = :name"
+        conn = get_db()
+        user = conn.execute(query, {"name": name}).fetchone()
+
+        if user:
+            logger.warning(f"用户名 '{name}' 已存在")
+            return jsonify({"success": False, "message": "用户名已存在"}), 400
+
+        # 向数据库插入数据
+        query = "INSERT INTO users (name, password) VALUES (:name, :password)"
+        conn.execute(query, {"name": name, "password": hashed_password})
+        conn.commit()
+
+        logger.info(f"User '{name}' registered successfully.")
+        return jsonify({"success": True, "message": "注册成功"})
+
+    except Exception as e:
+        # 记录错误日志并返回错误信息
+        logger.error(f"Error registering user: {e}", exc_info=True)
+        return jsonify({"success": False, "message": "注册失败"}), 500
+
+
+def get_column_names(table_name):
+    """
+    动态获取数据库表的列名。
+    """
+    try:
+        conn = get_db()
+        query = f"PRAGMA table_info({table_name});"
+        result = conn.execute(query).fetchall()
+        conn.close()
+        return [row[1] for row in result]  # 第二列是列名
+    except Exception as e:
+        logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
+        return []
+
+
+# 导出数据
+@bp.route('/export_data', methods=['GET'])
+def export_data():
+    table_name = request.args.get('table')
+    file_format = request.args.get('format', 'excel').lower()
+
+    if not table_name:
+        return jsonify({'error': '缺少表名参数'}), 400
+    if not table_name.isidentifier():
+        return jsonify({'error': '无效的表名'}), 400
+
+    try:
+        conn = get_db()
+        query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
+        table_exists = conn.execute(query, (table_name,)).fetchone()
+        if not table_exists:
+            return jsonify({'error': f"表 {table_name} 不存在"}), 404
+
+        query = f"SELECT * FROM {table_name};"
+        df = pd.read_sql(query, conn)
+
+        output = BytesIO()
+        if file_format == 'csv':
+            df.to_csv(output, index=False, encoding='utf-8')
+            output.seek(0)
+            return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
+        elif file_format == 'excel':
+            df.to_excel(output, index=False, engine='openpyxl')
+            output.seek(0)
+            return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
+                             mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
+        else:
+            return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
+
+    except Exception as e:
+        logger.error(f"Error in export_data: {e}", exc_info=True)
+        return jsonify({'error': str(e)}), 500
+
+
+# 导入数据接口
+@bp.route('/import_data', methods=['POST'])
+def import_data():
+    logger.debug("Import data endpoint accessed.")
+    if 'file' not in request.files:
+        logger.error("No file in request.")
+        return jsonify({'success': False, 'message': '文件缺失'}), 400
+
+    file = request.files['file']
+    table_name = request.form.get('table')
+
+    if not table_name:
+        logger.error("Missing table name parameter.")
+        return jsonify({'success': False, 'message': '缺少表名参数'}), 400
+
+    if file.filename == '':
+        logger.error("No file selected.")
+        return jsonify({'success': False, 'message': '未选择文件'}), 400
+
+    try:
+        # 保存文件到临时路径
+        temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
+        file.save(temp_path)
+        logger.debug(f"File saved to temporary path: {temp_path}")
+
+        # 根据文件类型读取文件
+        if file.filename.endswith('.xlsx'):
+            df = pd.read_excel(temp_path)
+        elif file.filename.endswith('.csv'):
+            df = pd.read_csv(temp_path)
+        else:
+            logger.error("Unsupported file format.")
+            return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
+
+        # 获取数据库列名
+        db_columns = get_column_names(table_name)
+        if 'id' in db_columns:
+            db_columns.remove('id')  # 假设 id 列是自增的,不需要处理
+
+        if not set(db_columns).issubset(set(df.columns)):
+            logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
+            return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
+
+        # 清洗数据并删除空值行
+        df_cleaned = df[db_columns].dropna()
+
+        # 统一数据类型,避免 int 和 float 合并问题
+        df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
+
+        # 获取现有的数据
+        conn = get_db()
+        with conn:
+            existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
+
+            # 查找重复数据
+            duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
+
+            # 如果有重复数据,删除它们
+            df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
+            logger.warning(f"Duplicate data detected and removed: {duplicates}")
+
+            # 获取导入前后的数据量
+            total_data = len(df_cleaned) + len(duplicates)
+            new_data = len(df_cleaned)
+            duplicate_data = len(duplicates)
+
+            # 导入不重复的数据
+            df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
+            logger.debug(f"Imported {new_data} new records into the database.")
+
+        # 删除临时文件
+        os.remove(temp_path)
+        logger.debug(f"Temporary file removed: {temp_path}")
+
+        # 返回结果
+        return jsonify({
+            'success': True,
+            'message': '数据导入成功',
+            'total_data': total_data,
+            'new_data': new_data,
+            'duplicate_data': duplicate_data
+        }), 200
+
+    except Exception as e:
+        logger.error(f"Import failed: {e}", exc_info=True)
+        return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
+
+
+# 模板下载接口
+@bp.route('/download_template', methods=['GET'])
+def download_template():
+    """
+    根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
+    """
+    table_name = request.args.get('table')
+    if not table_name:
+        return jsonify({'error': '表名参数缺失'}), 400
+
+    columns = get_column_names(table_name)
+    if not columns:
+        return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
+
+    # 不包括 ID 列
+    if 'id' in columns:
+        columns.remove('id')
+
+    df = pd.DataFrame(columns=columns)
+
+    file_format = request.args.get('format', 'excel').lower()
+    try:
+        if file_format == 'csv':
+            output = BytesIO()
+            df.to_csv(output, index=False, encoding='utf-8')
+            output.seek(0)
+            return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
+                             mimetype='text/csv')
+        else:
+            output = BytesIO()
+            df.to_excel(output, index=False, engine='openpyxl')
+            output.seek(0)
+            return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
+                             mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
+    except Exception as e:
+        logger.error(f"Failed to generate template: {e}", exc_info=True)
+        return jsonify({'error': '生成模板文件失败'}), 500
+
+@bp.route('/update-threshold', methods=['POST'])
+def update_threshold():
+    """
+    更新训练阈值的API接口
+    
+    @body_param threshold: 新的阈值值(整数)
+    @return: JSON响应
+    """
+    try:
+        data = request.get_json()
+        new_threshold = data.get('threshold')
+        
+        # 验证新阈值
+        if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
+            return jsonify({
+                'error': '无效的阈值值,必须为正数'
+            }), 400
+            
+        # 更新当前应用的阈值配置
+        current_app.config['THRESHOLD'] = int(new_threshold)
+        
+        return jsonify({
+            'success': True,
+            'message': f'阈值已更新为 {new_threshold}',
+            'new_threshold': new_threshold
+        })
+        
+    except Exception as e:
+        logging.error(f"更新阈值失败: {str(e)}")
+        return jsonify({
+            'error': f'更新阈值失败: {str(e)}'
+        }), 500
+
+
+@bp.route('/get-threshold', methods=['GET'])
+def get_threshold():
+    """
+    获取当前训练阈值的API接口
+    
+    @return: JSON响应
+    """
+    try:
+        current_threshold = current_app.config['THRESHOLD']
+        default_threshold = current_app.config['DEFAULT_THRESHOLD']
+        
+        return jsonify({
+            'current_threshold': current_threshold,
+            'default_threshold': default_threshold
+        })
+        
+    except Exception as e:
+        logging.error(f"获取阈值失败: {str(e)}")
+        return jsonify({
+            'error': f'获取阈值失败: {str(e)}'
+        }), 500
+
+@bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
+def set_current_dataset(data_type, dataset_id):
+    """
+    将指定数据集设置为current数据集
+    
+    @param data_type: 数据集类型 ('reduce' 或 'reflux')
+    @param dataset_id: 要设置为current的数据集ID
+    @return: JSON响应
+    """
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        # 验证数据集存在且类型匹配
+        dataset = session.query(Datasets)\
+            .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
+            .first()
+            
+        if not dataset:
+            return jsonify({
+                'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
+            }), 404
+            
+        # 根据数据类型选择表
+        if data_type == 'reduce':
+            table = CurrentReduce
+            table_name = 'current_reduce'
+        elif data_type == 'reflux':
+            table = CurrentReflux
+            table_name = 'current_reflux'
+        else:
+            return jsonify({'error': '无效的数据集类型'}), 400
+            
+        # 清空current表
+        session.query(table).delete()
+        
+        # 重置自增主键计数器
+        session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
+        
+        # 从指定数据集复制数据到current表
+        dataset_table_name = f"dataset_{dataset_id}"
+        copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
+        session.execute(copy_sql)
+        
+        session.commit()
+        
+        return jsonify({
+            'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
+            'dataset_id': dataset_id,
+            'dataset_name': dataset.Dataset_name,
+            'row_count': dataset.Row_count
+        }), 200
+        
+    except Exception as e:
+        session.rollback()
+        logger.error(f'设置current数据集失败: {str(e)}')
+        return jsonify({'error': str(e)}), 500
+        
+    finally:
+        session.close()
+
+@bp.route('/get-model-history/<string:data_type>', methods=['GET'])
+def get_model_history(data_type):
+    """
+    获取模型训练历史数据的API接口
+    
+    @param data_type: 数据集类型 ('reduce' 或 'reflux')
+    @return: JSON响应,包含时间序列的模型性能数据
+    """
+    Session = sessionmaker(bind=db.engine)
+    session = Session()
+    
+    try:
+        # 查询所有自动生成的数据集,按时间排序
+        datasets = session.query(Datasets).filter(
+            Datasets.Dataset_type == data_type,
+            Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
+        ).order_by(Datasets.Uploaded_at).all()
+        
+        history_data = []
+        for dataset in datasets:
+            # 查找对应的自动训练模型
+            model = session.query(Models).filter(
+                Models.DatasetID == dataset.Dataset_ID,
+                Models.Model_name.like(f'auto_trained_{data_type}_%')
+            ).first()
+            
+            if model and model.Performance_score is not None:
+                # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
+                created_at = model.Created_at.isoformat() if model.Created_at else None
+                
+                history_data.append({
+                    'dataset_id': dataset.Dataset_ID,
+                    'row_count': dataset.Row_count,
+                    'model_id': model.ModelID,
+                    'model_name': model.Model_name,
+                    'performance_score': float(model.Performance_score),
+                    'timestamp': created_at
+                })
+        
+        # 按时间戳排序
+        history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
+        
+        # 构建返回数据,分离各个指标序列便于前端绘图
+        response_data = {
+            'data_type': data_type,
+            'timestamps': [item['timestamp'] for item in history_data],
+            'row_counts': [item['row_count'] for item in history_data],
+            'performance_scores': [item['performance_score'] for item in history_data],
+            'model_details': history_data  # 保留完整数据供前端使用
+        }
+        
+        return jsonify(response_data), 200
+        
+    except Exception as e:
+        logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
+        return jsonify({'error': str(e)}), 500
+        
+    finally:
+        session.close()
+
+@bp.route('/batch-delete-datasets', methods=['POST'])
+def batch_delete_datasets():
+    """
+    批量删除数据集的API接口
+    
+    @body_param dataset_ids: 要删除的数据集ID列表
+    @return: JSON响应
+    """
+    try:
+        data = request.get_json()
+        dataset_ids = data.get('dataset_ids', [])
+        
+        if not dataset_ids:
+            return jsonify({'error': '未提供数据集ID列表'}), 400
+            
+        results = {
+            'success': [],
+            'failed': [],
+            'protected': []  # 被模型使用的数据集
+        }
+        
+        for dataset_id in dataset_ids:
+            try:
+                # 调用单个删除接口
+                response = delete_dataset_endpoint(dataset_id)
+                
+                # 解析响应
+                if response[1] == 200:
+                    results['success'].append(dataset_id)
+                elif response[1] == 400 and 'models' in response[0].json:
+                    # 数据集被模型保护
+                    results['protected'].append({
+                        'id': dataset_id,
+                        'models': response[0].json['models']
+                    })
+                else:
+                    results['failed'].append({
+                        'id': dataset_id,
+                        'reason': response[0].json.get('error', '删除失败')
+                    })
+                    
+            except Exception as e:
+                logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
+                results['failed'].append({
+                    'id': dataset_id,
+                    'reason': str(e)
+                })
+        
+        # 构建响应消息
+        message = f"成功删除 {len(results['success'])} 个数据集"
+        if results['protected']:
+            message += f", {len(results['protected'])} 个数据集被保护"
+        if results['failed']:
+            message += f", {len(results['failed'])} 个数据集删除失败"
+            
+        return jsonify({
+            'message': message,
+            'results': results
+        }), 200
+        
+    except Exception as e:
+        logger.error(f'批量删除数据集失败: {str(e)}')
+        return jsonify({'error': str(e)}), 500
+
+@bp.route('/batch-delete-models', methods=['POST'])
+def batch_delete_models():
+    """
+    批量删除模型的API接口
+    
+    @body_param model_ids: 要删除的模型ID列表
+    @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
+    @return: JSON响应
+    """
+    try:
+        data = request.get_json()
+        model_ids = data.get('model_ids', [])
+        delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
+        
+        if not model_ids:
+            return jsonify({'error': '未提供模型ID列表'}), 400
+            
+        results = {
+            'success': [],
+            'failed': [],
+            'datasets_deleted': []  # 如果delete_datasets为true,记录被删除的数据集
+        }
+        
+        for model_id in model_ids:
+            try:
+                # 调用单个删除接口
+                response = delete_model(model_id, delete_dataset=delete_datasets)
+                
+                # 解析响应
+                if response[1] == 200:
+                    results['success'].append(model_id)
+                    # 如果删除了关联数据集,记录数据集ID
+                    if 'dataset_info' in response[0].json:
+                        results['datasets_deleted'].append(
+                            response[0].json['dataset_info']['dataset_id']
+                        )
+                else:
+                    results['failed'].append({
+                        'id': model_id,
+                        'reason': response[0].json.get('error', '删除失败')
+                    })
+                    
+            except Exception as e:
+                logger.error(f'删除模型 {model_id} 失败: {str(e)}')
+                results['failed'].append({
+                    'id': model_id,
+                    'reason': str(e)
+                })
+        
+        # 构建响应消息
+        message = f"成功删除 {len(results['success'])} 个模型"
+        if results['datasets_deleted']:
+            message += f", {len(results['datasets_deleted'])} 个关联数据集"
+        if results['failed']:
+            message += f", {len(results['failed'])} 个模型删除失败"
+            
+        return jsonify({
+            'message': message,
+            'results': results
+        }), 200
+        
+    except Exception as e:
+        logger.error(f'批量删除模型失败: {str(e)}')
+        return jsonify({'error': str(e)}), 500
+
+@bp.route('/kriging_interpolation', methods=['POST'])
+def kriging_interpolation():
+    try:
+        data = request.get_json()
+        required = ['file_name', 'emission_column', 'points']
+        if not all(k in data for k in required):
+            return jsonify({"error": "Missing parameters"}), 400
+
+        # 添加坐标顺序验证
+        points = data['points']
+        if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
+            return jsonify({"error": "Invalid points format"}), 400
+
+        result = create_kriging(
+            data['file_name'],
+            data['emission_column'],
+            data['points']
+        )
+        return jsonify(result)
+    except Exception as e:
+        return jsonify({"error": str(e)}), 500
+
+# 显示切换模型
+@bp.route('/models', methods=['GET'])
+def get_models():
+    session = None
+    try:
+        # 创建 session
+        Session = sessionmaker(bind=db.engine)
+        session = Session()
+
+        # 查询所有模型
+        models = session.query(Models).all()
+
+        logger.debug(f"Models found: {models}")  # 打印查询的模型数据
+
+        if not models:
+            return jsonify({'message': 'No models found'}), 404
+
+        # 将模型数据转换为字典列表
+        models_list = [
+            {
+                'ModelID': model.ModelID,
+                'ModelName': model.Model_name,
+                'ModelType': model.Model_type,
+                'CreatedAt': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
+                'Description': model.Description,
+                'DatasetID': model.DatasetID,
+                'ModelFilePath': model.ModelFilePath,
+                'DataType': model.Data_type,
+                'PerformanceScore': model.Performance_score
+            }
+            for model in models
+        ]
+
+        return jsonify(models_list), 200
+
+    except Exception as e:
+        return jsonify({'error': str(e)}), 400
+    finally:
+        if session:
+            session.close()
+
+# 切换模型接口
+@bp.route('/switch-model', methods=['POST'])
+def switch_model():
+    session = None
+    try:
+        data = request.get_json()
+        model_id = data.get('model_id')
+        model_name = data.get('model_name')
+
+        # 创建 session
+        Session = sessionmaker(bind=db.engine)
+        session = Session()
+
+        # 查找模型
+        model = session.query(Models).filter_by(ModelID=model_id).first()
+        if not model:
+            return jsonify({'error': 'Model not found'}), 404
+
+        # 更新模型状态(或其他切换逻辑)
+        # 假设此处是更新模型的某些字段来进行切换
+        model.status = 'active'  # 假设有一个字段记录模型状态
+        session.commit()
+
+        # 记录切换日志
+        logger.info(f'Model {model_name} (ID: {model_id}) switched successfully.')
+
+        return jsonify({'success': True, 'message': f'Model {model_name} switched successfully!'}), 200
+
+    except Exception as e:
+        logger.error('Failed to switch model:', exc_info=True)
+        return jsonify({'error': str(e)}), 400
+    finally:
+        if session:
+            session.close()
+
+# 修改了一下登录·接口
+@bp.route('/login', methods=['POST'])
+def login_user():
+    data = request.get_json()
+    logger.debug(f"Received login data: {data}")  # 增加调试日志
+    name = data.get('name')
+    password = data.get('password')
+
+    logger.info(f"Login request received for user: {name}")
+
+    if not isinstance(name, str) or not isinstance(password, str):
+        logger.warning("Username and password must be strings")
+        return jsonify({"success": False, "message": "用户名和密码必须为字符串"}), 400
+
+    if not name or not password:
+        logger.warning("Username and password cannot be empty")
+        return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
+
+    query = "SELECT id, name, password FROM users WHERE name = ?"
+
+    try:
+        with get_db() as conn:
+            user = conn.execute(query, (name,)).fetchone()
+
+            if not user:
+                logger.warning(f"User '{name}' does not exist")
+                return jsonify({"success": False, "message": "用户名不存在"}), 400
+
+            stored_password = user[2]  # 假设 'password' 是第三个字段
+            user_id = user[0]  # 假设 'id' 是第一个字段
+
+            if check_password_hash(stored_password, password):
+                session['name'] = name
+                logger.info(f"User '{name}' logged in successfully.")
+                return jsonify({
+                    "success": True,
+                    "message": "登录成功",
+                    "userId": user_id,
+                    "name": name
+                })
+            else:
+                logger.warning(f"Incorrect password for user '{name}'")
+                return jsonify({"success": False, "message": "用户名或密码错误"}), 400
+
+    except sqlite3.DatabaseError as db_err:
+        logger.error(f"Database error during login process: {db_err}", exc_info=True)
+        return jsonify({"success": False, "message": "数据库错误"}), 500
+    except Exception as e:
+        logger.error(f"Unexpected error during login process: {e}", exc_info=True)
+        return jsonify({"success": False, "message": "登录失败"}), 500
+
+# 添加退出登录状态接口
+@bp.route('/logout', methods=['GET', 'POST'])
+def logout_user():
+    try:
+        session.clear()
+        return jsonify({"msg": "退出成功"}), 200
+    except Exception as e:
+        logger.error(f"Error during logout process: {e}", exc_info=True)
+        return jsonify({"msg": "退出失败"}), 500
+
+# 获取软件介绍信息的路由
+@bp.route('/software-intro/<int:id>', methods=['GET'])
+def get_software_intro(id):
+    try:
+        conn = get_db_connection()
+        cursor = conn.cursor()
+        cursor.execute('SELECT title, intro FROM software_intro WHERE id = ?', (id,))
+        result = cursor.fetchone()
+        conn.close()
+
+        if result:
+            title, intro = result
+            return jsonify({
+                'title': title,
+                'intro': intro
+            })
+        return jsonify({}), 404
+    except sqlite3.Error as e:
+        print(f"数据库错误: {e}")
+        return jsonify({"error": f"数据库错误: {str(e)}"}), 500
+
+
+# 更新软件介绍信息的路由
+@bp.route('/software-intro/<int:id>', methods=['PUT'])
+def update_software_intro(id):
+    try:
+        data = request.get_json()
+        title = data.get('title')
+        intro = data.get('intro')
+
+        conn = get_db_connection()
+        cursor = conn.cursor()
+        cursor.execute('UPDATE software_intro SET title =?, intro =? WHERE id = ?', (title, intro, id))
+        conn.commit()
+        conn.close()
+
+        return jsonify({'message': '软件介绍更新成功'})
+    except sqlite3.Error as e:
+        print(f"数据库错误: {e}")
+        return jsonify({"error": f"数据库错误: {str(e)}"}), 500
+
+
+# 处理图片上传的路由
+@bp.route('/upload-image', methods=['POST'])
+def upload_image():
+    file = request.files['image']
+    if file:
+        filename = str(uuid.uuid4()) + '.' + file.filename.rsplit('.', 1)[1].lower()
+        file.save(os.path.join(os.getcwd(), 'uploads', filename))
+        imageUrl = f'http://127.0.0.1:5000/uploads/{filename}'
+        return jsonify({'imageUrl': imageUrl})
+    return jsonify({'error': '未找到图片文件'}), 400
+
+
+# 配置静态资源服务
+@bp.route('/uploads/<path:filename>')
+def serve_image(filename):
+    uploads_folder = os.path.join(os.getcwd(), 'uploads')
+    return send_from_directory(uploads_folder, filename)