|
@@ -1,25 +1,1777 @@
|
|
|
-from flask import Blueprint, request, jsonify
|
|
|
-from .model import predict
|
|
|
+import sqlite3
|
|
|
+from io import BytesIO
|
|
|
+from flask import Blueprint, request, jsonify,send_from_directory, current_app, send_file, session
|
|
|
+from werkzeug.security import check_password_hash, generate_password_hash
|
|
|
+from werkzeug.utils import secure_filename
|
|
|
+
|
|
|
+from .model import predict, train_and_save_model, calculate_model_score
|
|
|
import pandas as pd
|
|
|
+from . import db # 从 app 包导入 db 实例
|
|
|
+from sqlalchemy.engine.reflection import Inspector
|
|
|
+from .database_models import Models, ModelParameters, Datasets, CurrentReduce, CurrentReflux
|
|
|
+import os
|
|
|
+from .utils import create_dynamic_table, allowed_file, infer_column_types, rename_columns_for_model_predict, \
|
|
|
+ clean_column_names, rename_columns_for_model, insert_data_into_dynamic_table, insert_data_into_existing_table, \
|
|
|
+ predict_to_Q, Q_to_t_ha, create_kriging
|
|
|
+from sqlalchemy.orm import sessionmaker
|
|
|
+import logging
|
|
|
+from sqlalchemy import text, select, MetaData, Table, func
|
|
|
+from .tasks import train_model_task
|
|
|
+from datetime import datetime
|
|
|
+import uuid
|
|
|
|
|
|
+# 配置日志
|
|
|
+logging.basicConfig(level=logging.DEBUG)
|
|
|
+logger = logging.getLogger(__name__)
|
|
|
# 创建蓝图 (Blueprint),用于分离路由
|
|
|
bp = Blueprint('routes', __name__)
|
|
|
|
|
|
+# 封装数据库连接函数
|
|
|
+def get_db_connection():
|
|
|
+ return sqlite3.connect('software_intro.db')
|
|
|
+
|
|
|
+# 密码加密
|
|
|
+def hash_password(password):
|
|
|
+ return generate_password_hash(password)
|
|
|
+
|
|
|
+
|
|
|
+def get_db():
|
|
|
+ """ 获取数据库连接 """
|
|
|
+ return sqlite3.connect(current_app.config['DATABASE'])
|
|
|
+
|
|
|
+
|
|
|
+# 添加一个新的辅助函数来检查数据集大小并触发训练
|
|
|
+def check_and_trigger_training(session, dataset_type, dataset_df):
|
|
|
+ """
|
|
|
+ 检查当前数据集大小是否跨越新的阈值点并触发训练
|
|
|
+
|
|
|
+ Args:
|
|
|
+ session: 数据库会话
|
|
|
+ dataset_type: 数据集类型 ('reduce' 或 'reflux')
|
|
|
+ dataset_df: 数据集 DataFrame
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ tuple: (是否触发训练, 任务ID)
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ # 根据数据集类型选择表
|
|
|
+ table = CurrentReduce if dataset_type == 'reduce' else CurrentReflux
|
|
|
+
|
|
|
+ # 获取当前记录数
|
|
|
+ current_count = session.query(func.count()).select_from(table).scalar()
|
|
|
+
|
|
|
+ # 获取新增的记录数(从request.files中获取的DataFrame长度)
|
|
|
+ new_records = len(dataset_df) # 需要从上层函数传入
|
|
|
+
|
|
|
+ # 计算新增数据前的记录数
|
|
|
+ previous_count = current_count - new_records
|
|
|
+
|
|
|
+ # 设置阈值
|
|
|
+ THRESHOLD = current_app.config['THRESHOLD']
|
|
|
+
|
|
|
+ # 计算上一个阈值点(基于新增前的数据量)
|
|
|
+ last_threshold = previous_count // THRESHOLD * THRESHOLD
|
|
|
+ # 计算当前所在阈值点
|
|
|
+ current_threshold = current_count // THRESHOLD * THRESHOLD
|
|
|
+
|
|
|
+ # 检查是否跨越了新的阈值点
|
|
|
+ if current_threshold > last_threshold and current_count >= THRESHOLD:
|
|
|
+ # 触发异步训练任务
|
|
|
+ task = train_model_task.delay(
|
|
|
+ model_type=current_app.config['DEFAULT_MODEL_TYPE'],
|
|
|
+ model_name=f'auto_trained_{dataset_type}_{current_threshold}',
|
|
|
+ model_description=f'Auto trained model at {current_threshold} records threshold',
|
|
|
+ data_type=dataset_type
|
|
|
+ )
|
|
|
+ return True, task.id
|
|
|
+
|
|
|
+ return False, None
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logging.error(f"检查并触发训练失败: {str(e)}")
|
|
|
+ return False, None
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/upload-dataset', methods=['POST'])
|
|
|
+def upload_dataset():
|
|
|
+ # 创建 session
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ if 'file' not in request.files:
|
|
|
+ return jsonify({'error': 'No file part'}), 400
|
|
|
+ file = request.files['file']
|
|
|
+ if file.filename == '' or not allowed_file(file.filename):
|
|
|
+ return jsonify({'error': 'No selected file or invalid file type'}), 400
|
|
|
+
|
|
|
+ dataset_name = request.form.get('dataset_name')
|
|
|
+ dataset_description = request.form.get('dataset_description', 'No description provided')
|
|
|
+ dataset_type = request.form.get('dataset_type')
|
|
|
+ if not dataset_type:
|
|
|
+ return jsonify({'error': 'Dataset type is required'}), 400
|
|
|
+
|
|
|
+ new_dataset = Datasets(
|
|
|
+ Dataset_name=dataset_name,
|
|
|
+ Dataset_description=dataset_description,
|
|
|
+ Row_count=0,
|
|
|
+ Status='Datasets_upgraded',
|
|
|
+ Dataset_type=dataset_type,
|
|
|
+ Uploaded_at=datetime.now()
|
|
|
+ )
|
|
|
+ session.add(new_dataset)
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ unique_filename = f"dataset_{new_dataset.Dataset_ID}.xlsx"
|
|
|
+ upload_folder = current_app.config['UPLOAD_FOLDER']
|
|
|
+ file_path = os.path.join(upload_folder, unique_filename)
|
|
|
+ file.save(file_path)
|
|
|
+
|
|
|
+ dataset_df = pd.read_excel(file_path)
|
|
|
+ new_dataset.Row_count = len(dataset_df)
|
|
|
+ new_dataset.Status = 'excel_file_saved success'
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ # 处理列名
|
|
|
+ dataset_df = clean_column_names(dataset_df)
|
|
|
+ dataset_df = rename_columns_for_model(dataset_df, dataset_type)
|
|
|
+
|
|
|
+ column_types = infer_column_types(dataset_df)
|
|
|
+ dynamic_table_class = create_dynamic_table(new_dataset.Dataset_ID, column_types)
|
|
|
+ insert_data_into_dynamic_table(session, dataset_df, dynamic_table_class)
|
|
|
+
|
|
|
+ # 根据 dataset_type 决定插入到哪个已有表
|
|
|
+ if dataset_type == 'reduce':
|
|
|
+ insert_data_into_existing_table(session, dataset_df, CurrentReduce)
|
|
|
+ elif dataset_type == 'reflux':
|
|
|
+ insert_data_into_existing_table(session, dataset_df, CurrentReflux)
|
|
|
+
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ # 在完成数据插入后,检查是否需要触发训练
|
|
|
+ training_triggered, task_id = check_and_trigger_training(session, dataset_type, dataset_df)
|
|
|
+
|
|
|
+ response_data = {
|
|
|
+ 'message': f'Dataset {dataset_name} uploaded successfully!',
|
|
|
+ 'dataset_id': new_dataset.Dataset_ID,
|
|
|
+ 'filename': unique_filename,
|
|
|
+ 'training_triggered': training_triggered
|
|
|
+ }
|
|
|
+
|
|
|
+ if training_triggered:
|
|
|
+ response_data['task_id'] = task_id
|
|
|
+ response_data['message'] += ' Auto-training has been triggered.'
|
|
|
+
|
|
|
+ return jsonify(response_data), 201
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ logging.error('Failed to process the dataset upload:', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+ finally:
|
|
|
+ # 确保 session 总是被关闭
|
|
|
+ if session:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/train-and-save-model', methods=['POST'])
|
|
|
+def train_and_save_model_endpoint():
|
|
|
+ # 创建 sessionmaker 实例
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ data = request.get_json()
|
|
|
+ # 从请求中解析参数
|
|
|
+ model_type = data.get('model_type')
|
|
|
+ model_name = data.get('model_name')
|
|
|
+ model_description = data.get('model_description')
|
|
|
+ data_type = data.get('data_type')
|
|
|
+ dataset_id = data.get('dataset_id', None) # 默认为 None,如果未提供
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 调用训练和保存模型的函数
|
|
|
+ result = train_and_save_model(session, model_type, model_name, model_description, data_type, dataset_id)
|
|
|
+
|
|
|
+ model_id = result[1] if result else None
|
|
|
+
|
|
|
+ # 计算模型评分
|
|
|
+ if model_id:
|
|
|
+ model_info = session.query(Models).filter(Models.ModelID == model_id).first()
|
|
|
+ if model_info:
|
|
|
+ score = calculate_model_score(model_info)
|
|
|
+ # 更新模型评分
|
|
|
+ model_info.Performance_score = score
|
|
|
+ session.commit()
|
|
|
+ result = {'model_id': model_id, 'model_score': score}
|
|
|
+
|
|
|
+ # 返回成功响应
|
|
|
+ return jsonify({
|
|
|
+ 'message': 'Model trained and saved successfully',
|
|
|
+ 'result': result
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ logging.error('Failed to process the model training:', exc_info=True)
|
|
|
+ return jsonify({
|
|
|
+ 'error': 'Failed to train and save model',
|
|
|
+ 'message': str(e)
|
|
|
+ }), 500
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
|
|
|
-# 路由:预测
|
|
|
@bp.route('/predict', methods=['POST'])
|
|
|
def predict_route():
|
|
|
+ # 创建 sessionmaker 实例
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ model_id = data.get('model_id') # 提取模型名称
|
|
|
+ parameters = data.get('parameters', {}) # 提取所有变量
|
|
|
+
|
|
|
+ # 根据model_id获取模型Data_type
|
|
|
+ model_info = session.query(Models).filter(Models.ModelID == model_id).first()
|
|
|
+ if not model_info:
|
|
|
+ return jsonify({'error': 'Model not found'}), 404
|
|
|
+ data_type = model_info.Data_type
|
|
|
+
|
|
|
+ input_data = pd.DataFrame([parameters]) # 转换参数为DataFrame
|
|
|
+ # 如果为reduce,则不需要传入target_ph
|
|
|
+ if data_type == 'reduce':
|
|
|
+ # 获取传入的init_ph、target_ph参数
|
|
|
+ init_ph = float(parameters.get('init_pH', 0.0)) # 默认值为0.0,防止None导致错误
|
|
|
+ target_ph = float(parameters.get('target_pH', 0.0)) # 默认值为0.0,防止None导致错误
|
|
|
+
|
|
|
+ # 从输入数据中删除'target_pH'列
|
|
|
+ input_data = input_data.drop('target_pH', axis=1, errors='ignore') # 使用errors='ignore'防止列不存在时出错
|
|
|
+
|
|
|
+ input_data_rename = rename_columns_for_model_predict(input_data, data_type) # 重命名列名以匹配模型字段
|
|
|
+ predictions = predict(session, input_data_rename, model_id) # 调用预测函数
|
|
|
+
|
|
|
+ if data_type == 'reduce':
|
|
|
+ predictions = predictions[0]
|
|
|
+ # 将预测结果转换为Q
|
|
|
+ Q = predict_to_Q(predictions, init_ph, target_ph)
|
|
|
+ predictions = Q_to_t_ha(Q) # 将Q转换为t/ha
|
|
|
+
|
|
|
+ print(predictions)
|
|
|
+
|
|
|
+ return jsonify({'result': predictions}), 200
|
|
|
+ except Exception as e:
|
|
|
+ logging.error('Failed to predict:', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 400
|
|
|
+
|
|
|
+
|
|
|
+# 为指定模型计算评分Performance_score,需要提供model_id
|
|
|
+@bp.route('/score-model/<int:model_id>', methods=['POST'])
|
|
|
+def score_model(model_id):
|
|
|
+ # 创建 sessionmaker 实例
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+ try:
|
|
|
+ model_info = session.query(Models).filter(Models.ModelID == model_id).first()
|
|
|
+ if not model_info:
|
|
|
+ return jsonify({'error': 'Model not found'}), 404
|
|
|
+
|
|
|
+ # 计算模型评分
|
|
|
+ score = calculate_model_score(model_info)
|
|
|
+
|
|
|
+ # 更新模型记录中的评分
|
|
|
+ model_info.Performance_score = score
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ return jsonify({'message': 'Model scored successfully', 'score': score}), 200
|
|
|
+ except Exception as e:
|
|
|
+ logging.error('Failed to process the dataset upload:', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 400
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/delete-dataset/<int:dataset_id>', methods=['DELETE'])
|
|
|
+def delete_dataset_endpoint(dataset_id):
|
|
|
+ """
|
|
|
+ 删除数据集的API接口
|
|
|
+
|
|
|
+ @param dataset_id: 要删除的数据集ID
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ # 创建 sessionmaker 实例
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+ try:
|
|
|
+ # 查询数据集
|
|
|
+ dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
|
|
|
+ if not dataset:
|
|
|
+ return jsonify({'error': '未找到数据集'}), 404
|
|
|
+
|
|
|
+ # 检查是否有模型使用了该数据集
|
|
|
+ models_using_dataset = session.query(Models).filter_by(DatasetID=dataset_id).all()
|
|
|
+ if models_using_dataset:
|
|
|
+ models_info = [{'ModelID': model.ModelID, 'Model_name': model.Model_name} for model in models_using_dataset]
|
|
|
+ return jsonify({
|
|
|
+ 'error': '无法删除数据集,因为以下模型正在使用它',
|
|
|
+ 'models': models_info
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 删除Excel文件
|
|
|
+ filename = f"dataset_{dataset.Dataset_ID}.xlsx"
|
|
|
+ file_path = os.path.join(current_app.config['UPLOAD_FOLDER'], filename)
|
|
|
+ if os.path.exists(file_path):
|
|
|
+ try:
|
|
|
+ os.remove(file_path)
|
|
|
+ except OSError as e:
|
|
|
+ logger.error(f'删除文件失败: {str(e)}')
|
|
|
+ return jsonify({'error': f'删除文件失败: {str(e)}'}), 500
|
|
|
+
|
|
|
+ # 删除数据表
|
|
|
+ table_name = f"dataset_{dataset.Dataset_ID}"
|
|
|
+ session.execute(text(f"DROP TABLE IF EXISTS {table_name}"))
|
|
|
+
|
|
|
+ # 删除数据集记录
|
|
|
+ session.delete(dataset)
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ 'message': '数据集删除成功',
|
|
|
+ 'deleted_files': [filename]
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ logger.error(f'删除数据集 {dataset_id} 失败:', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/tables', methods=['GET'])
|
|
|
+def list_tables():
|
|
|
+ engine = db.engine # 使用 db 实例的 engine
|
|
|
+ inspector = Inspector.from_engine(engine) # 创建 Inspector 对象
|
|
|
+ table_names = inspector.get_table_names() # 获取所有表名
|
|
|
+ return jsonify(table_names) # 以 JSON 形式返回表名列表
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/models/<int:model_id>', methods=['GET'])
|
|
|
+def get_model(model_id):
|
|
|
+ """
|
|
|
+ 获取单个模型信息的API接口
|
|
|
+
|
|
|
+ @param model_id: 模型ID
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ model = session.query(Models).filter_by(ModelID=model_id).first()
|
|
|
+ if model:
|
|
|
+ return jsonify({
|
|
|
+ 'ModelID': model.ModelID,
|
|
|
+ 'Model_name': model.Model_name,
|
|
|
+ 'Model_type': model.Model_type,
|
|
|
+ 'Created_at': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
+ 'Description': model.Description,
|
|
|
+ 'Performance_score': float(model.Performance_score) if model.Performance_score else None,
|
|
|
+ 'Data_type': model.Data_type
|
|
|
+ })
|
|
|
+ else:
|
|
|
+ return jsonify({'message': '未找到模型'}), 404
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'获取模型信息失败: {str(e)}')
|
|
|
+ return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
|
|
|
+
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+@bp.route('/model-parameters', methods=['GET'])
|
|
|
+def get_all_model_parameters():
|
|
|
+ """
|
|
|
+ 获取所有模型参数的API接口
|
|
|
+
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ parameters = session.query(ModelParameters).all()
|
|
|
+ if parameters:
|
|
|
+ result = [
|
|
|
+ {
|
|
|
+ 'ParamID': param.ParamID,
|
|
|
+ 'ModelID': param.ModelID,
|
|
|
+ 'ParamName': param.ParamName,
|
|
|
+ 'ParamValue': param.ParamValue
|
|
|
+ }
|
|
|
+ for param in parameters
|
|
|
+ ]
|
|
|
+ return jsonify(result)
|
|
|
+ else:
|
|
|
+ return jsonify({'message': '未找到任何参数'}), 404
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'获取所有模型参数失败: {str(e)}')
|
|
|
+ return jsonify({'error': '服务器内部错误', 'message': str(e)}), 500
|
|
|
+
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/models/<int:model_id>/parameters', methods=['GET'])
|
|
|
+def get_model_parameters(model_id):
|
|
|
+ try:
|
|
|
+ model = Models.query.filter_by(ModelID=model_id).first()
|
|
|
+ if model:
|
|
|
+ # 获取该模型的所有参数
|
|
|
+ parameters = [
|
|
|
+ {
|
|
|
+ 'ParamID': param.ParamID,
|
|
|
+ 'ParamName': param.ParamName,
|
|
|
+ 'ParamValue': param.ParamValue
|
|
|
+ }
|
|
|
+ for param in model.parameters
|
|
|
+ ]
|
|
|
+
|
|
|
+ # 返回模型参数信息
|
|
|
+ return jsonify({
|
|
|
+ 'ModelID': model.ModelID,
|
|
|
+ 'ModelName': model.ModelName,
|
|
|
+ 'ModelType': model.ModelType,
|
|
|
+ 'CreatedAt': model.CreatedAt.strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
+ 'Description': model.Description,
|
|
|
+ 'Parameters': parameters
|
|
|
+ })
|
|
|
+ else:
|
|
|
+ return jsonify({'message': 'Model not found'}), 404
|
|
|
+ except Exception as e:
|
|
|
+ return jsonify({'error': 'Internal server error', 'message': str(e)}), 500
|
|
|
+
|
|
|
+
|
|
|
+# 定义添加数据库记录的 API 接口
|
|
|
+@bp.route('/add_item', methods=['POST'])
|
|
|
+def add_item():
|
|
|
+ """
|
|
|
+ 接收 JSON 格式的请求体,包含表名和要插入的数据。
|
|
|
+ 尝试将数据插入到指定的表中,并进行字段查重。
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ # 确保请求体是 JSON 格式
|
|
|
+ data = request.get_json()
|
|
|
+ if not data:
|
|
|
+ raise ValueError("No JSON data provided")
|
|
|
+
|
|
|
+ table_name = data.get('table')
|
|
|
+ item_data = data.get('item')
|
|
|
+
|
|
|
+ if not table_name or not item_data:
|
|
|
+ return jsonify({'error': 'Missing table name or item data'}), 400
|
|
|
+
|
|
|
+ # 定义各个表的字段查重规则
|
|
|
+ duplicate_check_rules = {
|
|
|
+ 'users': ['email', 'username'],
|
|
|
+ 'products': ['product_code'],
|
|
|
+ 'current_reduce': [ 'Q_over_b', 'pH', 'OM', 'CL', 'H', 'Al'],
|
|
|
+ 'current_reflux': ['OM', 'CL', 'CEC', 'H_plus', 'N', 'Al3_plus', 'Delta_pH'],
|
|
|
+ # 其他表和规则
|
|
|
+ }
|
|
|
+
|
|
|
+ # 获取该表的查重字段
|
|
|
+ duplicate_columns = duplicate_check_rules.get(table_name)
|
|
|
+
|
|
|
+ if not duplicate_columns:
|
|
|
+ return jsonify({'error': 'No duplicate check rule for this table'}), 400
|
|
|
+
|
|
|
+ # 动态构建查询条件,逐一检查是否有重复数据
|
|
|
+ condition = ' AND '.join([f"{column} = :{column}" for column in duplicate_columns])
|
|
|
+ duplicate_query = f"SELECT 1 FROM {table_name} WHERE {condition} LIMIT 1"
|
|
|
+
|
|
|
+ result = db.session.execute(text(duplicate_query), item_data).fetchone()
|
|
|
+
|
|
|
+ if result:
|
|
|
+ return jsonify({'error': '重复数据,已有相同的数据项存在。'}), 409
|
|
|
+
|
|
|
+ # 动态构建 SQL 语句,进行插入操作
|
|
|
+ columns = ', '.join(item_data.keys())
|
|
|
+ placeholders = ', '.join([f":{key}" for key in item_data.keys()])
|
|
|
+ sql = f"INSERT INTO {table_name} ({columns}) VALUES ({placeholders})"
|
|
|
+
|
|
|
+ # 直接执行插入操作,无需显式的事务管理
|
|
|
+ db.session.execute(text(sql), item_data)
|
|
|
+
|
|
|
+ # 提交事务
|
|
|
+ db.session.commit()
|
|
|
+
|
|
|
+ # 返回成功响应
|
|
|
+ return jsonify({'success': True, 'message': 'Item added successfully'}), 201
|
|
|
+
|
|
|
+ except ValueError as e:
|
|
|
+ return jsonify({'error': str(e)}), 400
|
|
|
+ except KeyError as e:
|
|
|
+ return jsonify({'error': f'Missing data field: {e}'}), 400
|
|
|
+ except sqlite3.IntegrityError as e:
|
|
|
+ return jsonify({'error': '数据库完整性错误', 'details': str(e)}), 409
|
|
|
+ except sqlite3.Error as e:
|
|
|
+ return jsonify({'error': '数据库错误', 'details': str(e)}), 500
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/delete_item', methods=['POST'])
|
|
|
+def delete_item():
|
|
|
+ """
|
|
|
+ 删除数据库记录的 API 接口
|
|
|
+ """
|
|
|
+ data = request.get_json()
|
|
|
+ table_name = data.get('table')
|
|
|
+ condition = data.get('condition')
|
|
|
+
|
|
|
+ # 检查表名和条件是否提供
|
|
|
+ if not table_name or not condition:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "缺少表名或条件参数"
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 尝试从条件字符串中解析键和值
|
|
|
+ try:
|
|
|
+ key, value = condition.split('=')
|
|
|
+ key = key.strip() # 去除多余的空格
|
|
|
+ value = value.strip().strip("'\"") # 去除多余的空格和引号
|
|
|
+ except ValueError:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "条件格式错误,应为 'key=value'"
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 准备 SQL 删除语句
|
|
|
+ sql = f"DELETE FROM {table_name} WHERE {key} = :value"
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 使用 SQLAlchemy 执行删除
|
|
|
+ with db.session.begin():
|
|
|
+ result = db.session.execute(text(sql), {"value": value})
|
|
|
+
|
|
|
+ # 检查是否有记录被删除
|
|
|
+ if result.rowcount == 0:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "未找到符合条件的记录"
|
|
|
+ }), 404
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ "success": True,
|
|
|
+ "message": "记录删除成功"
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": f"删除失败: {e}"
|
|
|
+ }), 500
|
|
|
+
|
|
|
+# 定义修改数据库记录的 API 接口
|
|
|
+@bp.route('/update_item', methods=['PUT'])
|
|
|
+def update_record():
|
|
|
+ """
|
|
|
+ 接收 JSON 格式的请求体,包含表名和更新的数据。
|
|
|
+ 尝试更新指定的记录。
|
|
|
+ """
|
|
|
+ data = request.get_json()
|
|
|
+
|
|
|
+ # 检查必要的数据是否提供
|
|
|
+ if not data or 'table' not in data or 'item' not in data:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "请求数据不完整"
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ table_name = data['table']
|
|
|
+ item = data['item']
|
|
|
+
|
|
|
+ # 假设 item 的第一个键是 ID
|
|
|
+ id_key = next(iter(item.keys())) # 获取第一个键
|
|
|
+ record_id = item.get(id_key)
|
|
|
+
|
|
|
+ if not record_id:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "缺少记录 ID"
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 获取更新的字段和值
|
|
|
+ updates = {key: value for key, value in item.items() if key != id_key}
|
|
|
+
|
|
|
+ if not updates:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "没有提供需要更新的字段"
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 动态构建 SQL
|
|
|
+ set_clause = ', '.join([f"{key} = :{key}" for key in updates.keys()])
|
|
|
+ sql = f"UPDATE {table_name} SET {set_clause} WHERE {id_key} = :id_value"
|
|
|
+
|
|
|
+ # 添加 ID 到参数
|
|
|
+ updates['id_value'] = record_id
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 使用 SQLAlchemy 执行更新
|
|
|
+ with db.session.begin():
|
|
|
+ result = db.session.execute(text(sql), updates)
|
|
|
+
|
|
|
+ # 检查是否有更新的记录
|
|
|
+ if result.rowcount == 0:
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": "未找到要更新的记录"
|
|
|
+ }), 404
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ "success": True,
|
|
|
+ "message": "数据更新成功"
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ # 捕获所有异常并返回
|
|
|
+ return jsonify({
|
|
|
+ "success": False,
|
|
|
+ "message": f"更新失败: {str(e)}"
|
|
|
+ }), 500
|
|
|
+
|
|
|
+
|
|
|
+# 定义查询数据库记录的 API 接口
|
|
|
+@bp.route('/search/record', methods=['GET'])
|
|
|
+def sql_search():
|
|
|
+ """
|
|
|
+ 接收 JSON 格式的请求体,包含表名和要查询的 ID。
|
|
|
+ 尝试查询指定 ID 的记录并返回结果。
|
|
|
+ :return:
|
|
|
+ """
|
|
|
try:
|
|
|
- # 从请求中获取数据
|
|
|
data = request.get_json()
|
|
|
|
|
|
- # 将数据转为 pandas DataFrame,确保数据列名一致
|
|
|
- input_data = pd.DataFrame([data])
|
|
|
+ # 表名
|
|
|
+ sql_table = data['table']
|
|
|
+
|
|
|
+ # 要搜索的 ID
|
|
|
+ Id = data['id']
|
|
|
+
|
|
|
+ # 连接到数据库
|
|
|
+ cur = db.cursor()
|
|
|
+
|
|
|
+ # 构造查询语句
|
|
|
+ sql = f"SELECT * FROM {sql_table} WHERE id = ?"
|
|
|
+
|
|
|
+ # 执行查询
|
|
|
+ cur.execute(sql, (Id,))
|
|
|
+
|
|
|
+ # 获取查询结果
|
|
|
+ rows = cur.fetchall()
|
|
|
+ column_names = [desc[0] for desc in cur.description]
|
|
|
+
|
|
|
+ # 检查是否有结果
|
|
|
+ if not rows:
|
|
|
+ return jsonify({'error': '未查找到对应数据。'}), 400
|
|
|
+
|
|
|
+ # 构造响应数据
|
|
|
+ results = []
|
|
|
+ for row in rows:
|
|
|
+ result = {column_names[i]: row[i] for i in range(len(row))}
|
|
|
+ results.append(result)
|
|
|
+
|
|
|
+ # 关闭游标和数据库连接
|
|
|
+ cur.close()
|
|
|
+ db.close()
|
|
|
+
|
|
|
+ # 返回 JSON 响应
|
|
|
+ return jsonify(results), 200
|
|
|
+
|
|
|
+ except sqlite3.Error as e:
|
|
|
+ # 如果发生数据库错误,返回错误信息
|
|
|
+ return jsonify({'error': str(e)}), 400
|
|
|
+ except KeyError as e:
|
|
|
+ # 如果请求数据中缺少必要的键,返回错误信息
|
|
|
+ return jsonify({'error': f'缺少必要的数据字段: {e}'}), 400
|
|
|
+
|
|
|
+
|
|
|
+# 定义提供数据库列表,用于展示表格的 API 接口
|
|
|
+@bp.route('/table', methods=['POST'])
|
|
|
+def get_table():
|
|
|
+ data = request.get_json()
|
|
|
+ table_name = data.get('table')
|
|
|
+ if not table_name:
|
|
|
+ return jsonify({'error': '需要表名'}), 400
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 创建 sessionmaker 实例
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
|
|
|
- # 调用模型进行预测
|
|
|
- predictions = predict(input_data)
|
|
|
+ # 动态获取表的元数据
|
|
|
+ metadata = MetaData()
|
|
|
+ table = Table(table_name, metadata, autoload_with=db.engine)
|
|
|
+
|
|
|
+ # 从数据库中查询所有记录
|
|
|
+ query = select(table)
|
|
|
+ result = session.execute(query).fetchall()
|
|
|
+
|
|
|
+ # 将结果转换为列表字典形式
|
|
|
+ rows = [dict(zip([column.name for column in table.columns], row)) for row in result]
|
|
|
+
|
|
|
+ # 获取列名
|
|
|
+ headers = [column.name for column in table.columns]
|
|
|
+
|
|
|
+ return jsonify(rows=rows, headers=headers), 200
|
|
|
|
|
|
- # 返回预测结果
|
|
|
- return jsonify({'predictions': predictions}), 200
|
|
|
except Exception as e:
|
|
|
return jsonify({'error': str(e)}), 400
|
|
|
+ finally:
|
|
|
+ # 关闭 session
|
|
|
+ session.close()
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/train-model-async', methods=['POST'])
|
|
|
+def train_model_async():
|
|
|
+ """
|
|
|
+ 异步训练模型的API接口
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+
|
|
|
+ # 从请求中获取参数
|
|
|
+ model_type = data.get('model_type')
|
|
|
+ model_name = data.get('model_name')
|
|
|
+ model_description = data.get('model_description')
|
|
|
+ data_type = data.get('data_type')
|
|
|
+ dataset_id = data.get('dataset_id', None)
|
|
|
+
|
|
|
+ # 验证必要参数
|
|
|
+ if not all([model_type, model_name, data_type]):
|
|
|
+ return jsonify({
|
|
|
+ 'error': 'Missing required parameters'
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 如果提供了dataset_id,验证数据集是否存在
|
|
|
+ if dataset_id:
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+ try:
|
|
|
+ dataset = session.query(Datasets).filter_by(Dataset_ID=dataset_id).first()
|
|
|
+ if not dataset:
|
|
|
+ return jsonify({
|
|
|
+ 'error': f'Dataset with ID {dataset_id} not found'
|
|
|
+ }), 404
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+ # 启动异步任务
|
|
|
+ task = train_model_task.delay(
|
|
|
+ model_type=model_type,
|
|
|
+ model_name=model_name,
|
|
|
+ model_description=model_description,
|
|
|
+ data_type=data_type,
|
|
|
+ dataset_id=dataset_id
|
|
|
+ )
|
|
|
+
|
|
|
+ # 返回任务ID
|
|
|
+ return jsonify({
|
|
|
+ 'task_id': task.id,
|
|
|
+ 'message': 'Model training started'
|
|
|
+ }), 202
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logging.error('Failed to start async training task:', exc_info=True)
|
|
|
+ return jsonify({
|
|
|
+ 'error': str(e)
|
|
|
+ }), 500
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/task-status/<task_id>', methods=['GET'])
|
|
|
+def get_task_status(task_id):
|
|
|
+ """
|
|
|
+ 获取异步任务状态的API接口
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ task = train_model_task.AsyncResult(task_id)
|
|
|
+
|
|
|
+ if task.state == 'PENDING':
|
|
|
+ response = {
|
|
|
+ 'state': task.state,
|
|
|
+ 'status': 'Task is waiting for execution'
|
|
|
+ }
|
|
|
+ elif task.state == 'FAILURE':
|
|
|
+ response = {
|
|
|
+ 'state': task.state,
|
|
|
+ 'status': 'Task failed',
|
|
|
+ 'error': task.info.get('error') if isinstance(task.info, dict) else str(task.info)
|
|
|
+ }
|
|
|
+ elif task.state == 'SUCCESS':
|
|
|
+ response = {
|
|
|
+ 'state': task.state,
|
|
|
+ 'status': 'Task completed successfully',
|
|
|
+ 'result': task.get()
|
|
|
+ }
|
|
|
+ else:
|
|
|
+ response = {
|
|
|
+ 'state': task.state,
|
|
|
+ 'status': 'Task is in progress'
|
|
|
+ }
|
|
|
+
|
|
|
+ return jsonify(response), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ return jsonify({
|
|
|
+ 'error': str(e)
|
|
|
+ }), 500
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/delete-model/<int:model_id>', methods=['DELETE'])
|
|
|
+def delete_model_route(model_id):
|
|
|
+ # 将URL参数转换为布尔值
|
|
|
+ delete_dataset_param = request.args.get('delete_dataset', 'False').lower() == 'true'
|
|
|
+
|
|
|
+ # 调用原始函数
|
|
|
+ return delete_model(model_id, delete_dataset=delete_dataset_param)
|
|
|
+
|
|
|
+def delete_model(model_id, delete_dataset=False):
|
|
|
+ """
|
|
|
+ 删除指定模型的API接口
|
|
|
+
|
|
|
+ @param model_id: 要删除的模型ID
|
|
|
+ @query_param delete_dataset: 布尔值,是否同时删除关联的数据集,默认为False
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 查询模型信息
|
|
|
+ model = session.query(Models).filter_by(ModelID=model_id).first()
|
|
|
+ if not model:
|
|
|
+ return jsonify({'error': '未找到指定模型'}), 404
|
|
|
+
|
|
|
+ dataset_id = model.DatasetID
|
|
|
+
|
|
|
+ # 1. 先删除模型记录
|
|
|
+ session.delete(model)
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ # 2. 删除模型文件
|
|
|
+ model_file = f"rf_model_{model_id}.pkl"
|
|
|
+ model_path = os.path.join(current_app.config['MODEL_SAVE_PATH'], model_file)
|
|
|
+ if os.path.exists(model_path):
|
|
|
+ try:
|
|
|
+ os.remove(model_path)
|
|
|
+ except OSError as e:
|
|
|
+ # 如果删除文件失败,回滚数据库操作
|
|
|
+ session.rollback()
|
|
|
+ logger.error(f'删除模型文件失败: {str(e)}')
|
|
|
+ return jsonify({'error': f'删除模型文件失败: {str(e)}'}), 500
|
|
|
+
|
|
|
+ # 3. 如果需要删除关联的数据集
|
|
|
+ if delete_dataset and dataset_id:
|
|
|
+ try:
|
|
|
+ dataset_response = delete_dataset_endpoint(dataset_id)
|
|
|
+ if not isinstance(dataset_response, tuple) or dataset_response[1] != 200:
|
|
|
+ # 如果删除数据集失败,回滚之前的操作
|
|
|
+ session.rollback()
|
|
|
+ return jsonify({
|
|
|
+ 'error': '删除关联数据集失败',
|
|
|
+ 'dataset_error': dataset_response[0].get_json() if hasattr(dataset_response[0], 'get_json') else str(dataset_response[0])
|
|
|
+ }), 500
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ logger.error(f'删除关联数据集失败: {str(e)}')
|
|
|
+ return jsonify({'error': f'删除关联数据集失败: {str(e)}'}), 500
|
|
|
+
|
|
|
+ response_data = {
|
|
|
+ 'message': '模型删除成功',
|
|
|
+ 'deleted_files': [model_file]
|
|
|
+ }
|
|
|
+
|
|
|
+ if delete_dataset:
|
|
|
+ response_data['dataset_info'] = {
|
|
|
+ 'dataset_id': dataset_id,
|
|
|
+ 'message': '关联数据集已删除'
|
|
|
+ }
|
|
|
+ return jsonify(response_data), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ logger.error(f'删除模型 {model_id} 失败:', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+
|
|
|
+# 添加一个新的API端点来清空指定数据集
|
|
|
+@bp.route('/clear-dataset/<string:data_type>', methods=['DELETE'])
|
|
|
+def clear_dataset(data_type):
|
|
|
+ """
|
|
|
+ 清空指定类型的数据集并递增计数
|
|
|
+
|
|
|
+ @param data_type: 数据集类型 ('reduce' 或 'reflux')
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ # 创建 sessionmaker 实例
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 根据数据集类型选择表
|
|
|
+ if data_type == 'reduce':
|
|
|
+ table = CurrentReduce
|
|
|
+ table_name = 'current_reduce'
|
|
|
+ elif data_type == 'reflux':
|
|
|
+ table = CurrentReflux
|
|
|
+ table_name = 'current_reflux'
|
|
|
+ else:
|
|
|
+ return jsonify({'error': '无效的数据集类型'}), 400
|
|
|
+
|
|
|
+ # 清空表内容
|
|
|
+ session.query(table).delete()
|
|
|
+
|
|
|
+ # 重置自增主键计数器
|
|
|
+ session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
|
|
|
+
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ return jsonify({'message': f'{data_type} 数据集已清空并重置计数器'}), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+# 更新用户信息接口
|
|
|
+@bp.route('/update_user', methods=['POST'])
|
|
|
+def update_user():
|
|
|
+ # 获取前端传来的数据
|
|
|
+ data = request.get_json()
|
|
|
+
|
|
|
+ # 打印收到的请求数据
|
|
|
+ current_app.logger.info(f"Received data: {data}")
|
|
|
+
|
|
|
+ user_id = data.get('userId') # 用户ID
|
|
|
+ name = data.get('name') # 用户名
|
|
|
+ old_password = data.get('oldPassword') # 旧密码
|
|
|
+ new_password = data.get('newPassword') # 新密码
|
|
|
+
|
|
|
+ logger.info(f"Update request received: user_id={user_id}, name={name}")
|
|
|
+
|
|
|
+ # 校验传入的用户名和密码是否为空
|
|
|
+ if not name or not old_password:
|
|
|
+ logger.warning("用户名和旧密码不能为空")
|
|
|
+ return jsonify({"success": False, "message": "用户名和旧密码不能为空"}), 400
|
|
|
+
|
|
|
+ # 新密码和旧密码不能相同
|
|
|
+ if new_password and old_password == new_password:
|
|
|
+ logger.warning(f"新密码与旧密码相同:{name}")
|
|
|
+ return jsonify({"success": False, "message": "新密码与旧密码不能相同"}), 400
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 查询数据库验证用户ID
|
|
|
+ query = "SELECT * FROM users WHERE id = :user_id"
|
|
|
+ conn = get_db()
|
|
|
+ user = conn.execute(query, {"user_id": user_id}).fetchone()
|
|
|
+
|
|
|
+ if not user:
|
|
|
+ logger.warning(f"用户ID '{user_id}' 不存在")
|
|
|
+ return jsonify({"success": False, "message": "用户不存在"}), 400
|
|
|
+
|
|
|
+ # 获取数据库中存储的密码(假设密码是哈希存储的)
|
|
|
+ stored_password = user[2] # 假设密码存储在数据库的第三列
|
|
|
+
|
|
|
+ # 校验旧密码是否正确
|
|
|
+ if not check_password_hash(stored_password, old_password):
|
|
|
+ logger.warning(f"旧密码错误:{name}")
|
|
|
+ return jsonify({"success": False, "message": "旧密码错误"}), 400
|
|
|
+
|
|
|
+ # 如果新密码非空,则更新新密码
|
|
|
+ if new_password:
|
|
|
+ hashed_new_password = hash_password(new_password)
|
|
|
+ update_query = "UPDATE users SET password = :new_password WHERE id = :user_id"
|
|
|
+ conn.execute(update_query, {"new_password": hashed_new_password, "user_id": user_id})
|
|
|
+ conn.commit()
|
|
|
+ logger.info(f"User ID '{user_id}' password updated successfully.")
|
|
|
+
|
|
|
+ # 如果用户名发生更改,则更新用户名
|
|
|
+ if name != user[1]:
|
|
|
+ update_name_query = "UPDATE users SET name = :new_name WHERE id = :user_id"
|
|
|
+ conn.execute(update_name_query, {"new_name": name, "user_id": user_id})
|
|
|
+ conn.commit()
|
|
|
+ logger.info(f"User ID '{user_id}' name updated to '{name}' successfully.")
|
|
|
+
|
|
|
+ return jsonify({"success": True, "message": "用户信息更新成功"})
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ # 记录错误日志并返回错误信息
|
|
|
+ logger.error(f"Error updating user: {e}", exc_info=True)
|
|
|
+ return jsonify({"success": False, "message": "更新失败"}), 500
|
|
|
+
|
|
|
+
|
|
|
+# 注册用户
|
|
|
+@bp.route('/register', methods=['POST'])
|
|
|
+def register_user():
|
|
|
+ # 获取前端传来的数据
|
|
|
+ data = request.get_json()
|
|
|
+ name = data.get('name') # 用户名
|
|
|
+ password = data.get('password') # 密码
|
|
|
+
|
|
|
+ logger.info(f"Register request received: name={name}")
|
|
|
+
|
|
|
+ # 检查用户名和密码是否为空
|
|
|
+ if not name or not password:
|
|
|
+ logger.warning("用户名和密码不能为空")
|
|
|
+ return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
|
|
|
+
|
|
|
+ # 动态获取数据库表的列名
|
|
|
+ columns = get_column_names('users')
|
|
|
+ logger.info(f"Database columns for 'users' table: {columns}")
|
|
|
+
|
|
|
+ # 检查前端传来的数据是否包含数据库表中所有的必填字段
|
|
|
+ for column in ['name', 'password']:
|
|
|
+ if column not in columns:
|
|
|
+ logger.error(f"缺少必填字段:{column}")
|
|
|
+ return jsonify({"success": False, "message": f"缺少必填字段:{column}"}), 400
|
|
|
+
|
|
|
+ # 对密码进行哈希处理
|
|
|
+ hashed_password = hash_password(password)
|
|
|
+ logger.info(f"Password hashed for user: {name}")
|
|
|
+
|
|
|
+ # 插入到数据库
|
|
|
+ try:
|
|
|
+ # 检查用户是否已经存在
|
|
|
+ query = "SELECT * FROM users WHERE name = :name"
|
|
|
+ conn = get_db()
|
|
|
+ user = conn.execute(query, {"name": name}).fetchone()
|
|
|
+
|
|
|
+ if user:
|
|
|
+ logger.warning(f"用户名 '{name}' 已存在")
|
|
|
+ return jsonify({"success": False, "message": "用户名已存在"}), 400
|
|
|
+
|
|
|
+ # 向数据库插入数据
|
|
|
+ query = "INSERT INTO users (name, password) VALUES (:name, :password)"
|
|
|
+ conn.execute(query, {"name": name, "password": hashed_password})
|
|
|
+ conn.commit()
|
|
|
+
|
|
|
+ logger.info(f"User '{name}' registered successfully.")
|
|
|
+ return jsonify({"success": True, "message": "注册成功"})
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ # 记录错误日志并返回错误信息
|
|
|
+ logger.error(f"Error registering user: {e}", exc_info=True)
|
|
|
+ return jsonify({"success": False, "message": "注册失败"}), 500
|
|
|
+
|
|
|
+
|
|
|
+def get_column_names(table_name):
|
|
|
+ """
|
|
|
+ 动态获取数据库表的列名。
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ conn = get_db()
|
|
|
+ query = f"PRAGMA table_info({table_name});"
|
|
|
+ result = conn.execute(query).fetchall()
|
|
|
+ conn.close()
|
|
|
+ return [row[1] for row in result] # 第二列是列名
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"Error getting column names for table {table_name}: {e}", exc_info=True)
|
|
|
+ return []
|
|
|
+
|
|
|
+
|
|
|
+# 导出数据
|
|
|
+@bp.route('/export_data', methods=['GET'])
|
|
|
+def export_data():
|
|
|
+ table_name = request.args.get('table')
|
|
|
+ file_format = request.args.get('format', 'excel').lower()
|
|
|
+
|
|
|
+ if not table_name:
|
|
|
+ return jsonify({'error': '缺少表名参数'}), 400
|
|
|
+ if not table_name.isidentifier():
|
|
|
+ return jsonify({'error': '无效的表名'}), 400
|
|
|
+
|
|
|
+ try:
|
|
|
+ conn = get_db()
|
|
|
+ query = "SELECT name FROM sqlite_master WHERE type='table' AND name=?;"
|
|
|
+ table_exists = conn.execute(query, (table_name,)).fetchone()
|
|
|
+ if not table_exists:
|
|
|
+ return jsonify({'error': f"表 {table_name} 不存在"}), 404
|
|
|
+
|
|
|
+ query = f"SELECT * FROM {table_name};"
|
|
|
+ df = pd.read_sql(query, conn)
|
|
|
+
|
|
|
+ output = BytesIO()
|
|
|
+ if file_format == 'csv':
|
|
|
+ df.to_csv(output, index=False, encoding='utf-8')
|
|
|
+ output.seek(0)
|
|
|
+ return send_file(output, as_attachment=True, download_name=f'{table_name}_data.csv', mimetype='text/csv')
|
|
|
+ elif file_format == 'excel':
|
|
|
+ df.to_excel(output, index=False, engine='openpyxl')
|
|
|
+ output.seek(0)
|
|
|
+ return send_file(output, as_attachment=True, download_name=f'{table_name}_data.xlsx',
|
|
|
+ mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
|
|
+ else:
|
|
|
+ return jsonify({'error': '不支持的文件格式,仅支持 CSV 和 Excel'}), 400
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"Error in export_data: {e}", exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+
|
|
|
+# 导入数据接口
|
|
|
+@bp.route('/import_data', methods=['POST'])
|
|
|
+def import_data():
|
|
|
+ logger.debug("Import data endpoint accessed.")
|
|
|
+ if 'file' not in request.files:
|
|
|
+ logger.error("No file in request.")
|
|
|
+ return jsonify({'success': False, 'message': '文件缺失'}), 400
|
|
|
+
|
|
|
+ file = request.files['file']
|
|
|
+ table_name = request.form.get('table')
|
|
|
+
|
|
|
+ if not table_name:
|
|
|
+ logger.error("Missing table name parameter.")
|
|
|
+ return jsonify({'success': False, 'message': '缺少表名参数'}), 400
|
|
|
+
|
|
|
+ if file.filename == '':
|
|
|
+ logger.error("No file selected.")
|
|
|
+ return jsonify({'success': False, 'message': '未选择文件'}), 400
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 保存文件到临时路径
|
|
|
+ temp_path = os.path.join(current_app.config['UPLOAD_FOLDER'], secure_filename(file.filename))
|
|
|
+ file.save(temp_path)
|
|
|
+ logger.debug(f"File saved to temporary path: {temp_path}")
|
|
|
+
|
|
|
+ # 根据文件类型读取文件
|
|
|
+ if file.filename.endswith('.xlsx'):
|
|
|
+ df = pd.read_excel(temp_path)
|
|
|
+ elif file.filename.endswith('.csv'):
|
|
|
+ df = pd.read_csv(temp_path)
|
|
|
+ else:
|
|
|
+ logger.error("Unsupported file format.")
|
|
|
+ return jsonify({'success': False, 'message': '仅支持 Excel 和 CSV 文件'}), 400
|
|
|
+
|
|
|
+ # 获取数据库列名
|
|
|
+ db_columns = get_column_names(table_name)
|
|
|
+ if 'id' in db_columns:
|
|
|
+ db_columns.remove('id') # 假设 id 列是自增的,不需要处理
|
|
|
+
|
|
|
+ if not set(db_columns).issubset(set(df.columns)):
|
|
|
+ logger.error(f"File columns do not match database columns. File columns: {df.columns.tolist()}, Expected: {db_columns}")
|
|
|
+ return jsonify({'success': False, 'message': '文件列名与数据库表不匹配'}), 400
|
|
|
+
|
|
|
+ # 清洗数据并删除空值行
|
|
|
+ df_cleaned = df[db_columns].dropna()
|
|
|
+
|
|
|
+ # 统一数据类型,避免 int 和 float 合并问题
|
|
|
+ df_cleaned[db_columns] = df_cleaned[db_columns].apply(pd.to_numeric, errors='coerce')
|
|
|
+
|
|
|
+ # 获取现有的数据
|
|
|
+ conn = get_db()
|
|
|
+ with conn:
|
|
|
+ existing_data = pd.read_sql(f"SELECT * FROM {table_name}", conn)
|
|
|
+
|
|
|
+ # 查找重复数据
|
|
|
+ duplicates = df_cleaned.merge(existing_data, on=db_columns, how='inner')
|
|
|
+
|
|
|
+ # 如果有重复数据,删除它们
|
|
|
+ df_cleaned = df_cleaned[~df_cleaned.index.isin(duplicates.index)]
|
|
|
+ logger.warning(f"Duplicate data detected and removed: {duplicates}")
|
|
|
+
|
|
|
+ # 获取导入前后的数据量
|
|
|
+ total_data = len(df_cleaned) + len(duplicates)
|
|
|
+ new_data = len(df_cleaned)
|
|
|
+ duplicate_data = len(duplicates)
|
|
|
+
|
|
|
+ # 导入不重复的数据
|
|
|
+ df_cleaned.to_sql(table_name, conn, if_exists='append', index=False)
|
|
|
+ logger.debug(f"Imported {new_data} new records into the database.")
|
|
|
+
|
|
|
+ # 删除临时文件
|
|
|
+ os.remove(temp_path)
|
|
|
+ logger.debug(f"Temporary file removed: {temp_path}")
|
|
|
+
|
|
|
+ # 返回结果
|
|
|
+ return jsonify({
|
|
|
+ 'success': True,
|
|
|
+ 'message': '数据导入成功',
|
|
|
+ 'total_data': total_data,
|
|
|
+ 'new_data': new_data,
|
|
|
+ 'duplicate_data': duplicate_data
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"Import failed: {e}", exc_info=True)
|
|
|
+ return jsonify({'success': False, 'message': f'导入失败: {str(e)}'}), 500
|
|
|
+
|
|
|
+
|
|
|
+# 模板下载接口
|
|
|
+@bp.route('/download_template', methods=['GET'])
|
|
|
+def download_template():
|
|
|
+ """
|
|
|
+ 根据给定的表名,下载表的模板(如 CSV 或 Excel 格式)。
|
|
|
+ """
|
|
|
+ table_name = request.args.get('table')
|
|
|
+ if not table_name:
|
|
|
+ return jsonify({'error': '表名参数缺失'}), 400
|
|
|
+
|
|
|
+ columns = get_column_names(table_name)
|
|
|
+ if not columns:
|
|
|
+ return jsonify({'error': f"Table '{table_name}' not found or empty."}), 404
|
|
|
+
|
|
|
+ # 不包括 ID 列
|
|
|
+ if 'id' in columns:
|
|
|
+ columns.remove('id')
|
|
|
+
|
|
|
+ df = pd.DataFrame(columns=columns)
|
|
|
+
|
|
|
+ file_format = request.args.get('format', 'excel').lower()
|
|
|
+ try:
|
|
|
+ if file_format == 'csv':
|
|
|
+ output = BytesIO()
|
|
|
+ df.to_csv(output, index=False, encoding='utf-8')
|
|
|
+ output.seek(0)
|
|
|
+ return send_file(output, as_attachment=True, download_name=f'{table_name}_template.csv',
|
|
|
+ mimetype='text/csv')
|
|
|
+ else:
|
|
|
+ output = BytesIO()
|
|
|
+ df.to_excel(output, index=False, engine='openpyxl')
|
|
|
+ output.seek(0)
|
|
|
+ return send_file(output, as_attachment=True, download_name=f'{table_name}_template.xlsx',
|
|
|
+ mimetype='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"Failed to generate template: {e}", exc_info=True)
|
|
|
+ return jsonify({'error': '生成模板文件失败'}), 500
|
|
|
+
|
|
|
+@bp.route('/update-threshold', methods=['POST'])
|
|
|
+def update_threshold():
|
|
|
+ """
|
|
|
+ 更新训练阈值的API接口
|
|
|
+
|
|
|
+ @body_param threshold: 新的阈值值(整数)
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ new_threshold = data.get('threshold')
|
|
|
+
|
|
|
+ # 验证新阈值
|
|
|
+ if not isinstance(new_threshold, (int, float)) or new_threshold <= 0:
|
|
|
+ return jsonify({
|
|
|
+ 'error': '无效的阈值值,必须为正数'
|
|
|
+ }), 400
|
|
|
+
|
|
|
+ # 更新当前应用的阈值配置
|
|
|
+ current_app.config['THRESHOLD'] = int(new_threshold)
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ 'success': True,
|
|
|
+ 'message': f'阈值已更新为 {new_threshold}',
|
|
|
+ 'new_threshold': new_threshold
|
|
|
+ })
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logging.error(f"更新阈值失败: {str(e)}")
|
|
|
+ return jsonify({
|
|
|
+ 'error': f'更新阈值失败: {str(e)}'
|
|
|
+ }), 500
|
|
|
+
|
|
|
+
|
|
|
+@bp.route('/get-threshold', methods=['GET'])
|
|
|
+def get_threshold():
|
|
|
+ """
|
|
|
+ 获取当前训练阈值的API接口
|
|
|
+
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ current_threshold = current_app.config['THRESHOLD']
|
|
|
+ default_threshold = current_app.config['DEFAULT_THRESHOLD']
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ 'current_threshold': current_threshold,
|
|
|
+ 'default_threshold': default_threshold
|
|
|
+ })
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logging.error(f"获取阈值失败: {str(e)}")
|
|
|
+ return jsonify({
|
|
|
+ 'error': f'获取阈值失败: {str(e)}'
|
|
|
+ }), 500
|
|
|
+
|
|
|
+@bp.route('/set-current-dataset/<string:data_type>/<int:dataset_id>', methods=['POST'])
|
|
|
+def set_current_dataset(data_type, dataset_id):
|
|
|
+ """
|
|
|
+ 将指定数据集设置为current数据集
|
|
|
+
|
|
|
+ @param data_type: 数据集类型 ('reduce' 或 'reflux')
|
|
|
+ @param dataset_id: 要设置为current的数据集ID
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 验证数据集存在且类型匹配
|
|
|
+ dataset = session.query(Datasets)\
|
|
|
+ .filter_by(Dataset_ID=dataset_id, Dataset_type=data_type)\
|
|
|
+ .first()
|
|
|
+
|
|
|
+ if not dataset:
|
|
|
+ return jsonify({
|
|
|
+ 'error': f'未找到ID为 {dataset_id} 且类型为 {data_type} 的数据集'
|
|
|
+ }), 404
|
|
|
+
|
|
|
+ # 根据数据类型选择表
|
|
|
+ if data_type == 'reduce':
|
|
|
+ table = CurrentReduce
|
|
|
+ table_name = 'current_reduce'
|
|
|
+ elif data_type == 'reflux':
|
|
|
+ table = CurrentReflux
|
|
|
+ table_name = 'current_reflux'
|
|
|
+ else:
|
|
|
+ return jsonify({'error': '无效的数据集类型'}), 400
|
|
|
+
|
|
|
+ # 清空current表
|
|
|
+ session.query(table).delete()
|
|
|
+
|
|
|
+ # 重置自增主键计数器
|
|
|
+ session.execute(text(f"DELETE FROM sqlite_sequence WHERE name='{table_name}'"))
|
|
|
+
|
|
|
+ # 从指定数据集复制数据到current表
|
|
|
+ dataset_table_name = f"dataset_{dataset_id}"
|
|
|
+ copy_sql = text(f"INSERT INTO {table_name} SELECT * FROM {dataset_table_name}")
|
|
|
+ session.execute(copy_sql)
|
|
|
+
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ 'message': f'{data_type} current数据集已设置为数据集 ID: {dataset_id}',
|
|
|
+ 'dataset_id': dataset_id,
|
|
|
+ 'dataset_name': dataset.Dataset_name,
|
|
|
+ 'row_count': dataset.Row_count
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ session.rollback()
|
|
|
+ logger.error(f'设置current数据集失败: {str(e)}')
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+@bp.route('/get-model-history/<string:data_type>', methods=['GET'])
|
|
|
+def get_model_history(data_type):
|
|
|
+ """
|
|
|
+ 获取模型训练历史数据的API接口
|
|
|
+
|
|
|
+ @param data_type: 数据集类型 ('reduce' 或 'reflux')
|
|
|
+ @return: JSON响应,包含时间序列的模型性能数据
|
|
|
+ """
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 查询所有自动生成的数据集,按时间排序
|
|
|
+ datasets = session.query(Datasets).filter(
|
|
|
+ Datasets.Dataset_type == data_type,
|
|
|
+ Datasets.Dataset_description == f"Automatically generated dataset for type {data_type}"
|
|
|
+ ).order_by(Datasets.Uploaded_at).all()
|
|
|
+
|
|
|
+ history_data = []
|
|
|
+ for dataset in datasets:
|
|
|
+ # 查找对应的自动训练模型
|
|
|
+ model = session.query(Models).filter(
|
|
|
+ Models.DatasetID == dataset.Dataset_ID,
|
|
|
+ Models.Model_name.like(f'auto_trained_{data_type}_%')
|
|
|
+ ).first()
|
|
|
+
|
|
|
+ if model and model.Performance_score is not None:
|
|
|
+ # 直接使用数据库中的时间,不进行格式化(保持与created_at相同的时区)
|
|
|
+ created_at = model.Created_at.isoformat() if model.Created_at else None
|
|
|
+
|
|
|
+ history_data.append({
|
|
|
+ 'dataset_id': dataset.Dataset_ID,
|
|
|
+ 'row_count': dataset.Row_count,
|
|
|
+ 'model_id': model.ModelID,
|
|
|
+ 'model_name': model.Model_name,
|
|
|
+ 'performance_score': float(model.Performance_score),
|
|
|
+ 'timestamp': created_at
|
|
|
+ })
|
|
|
+
|
|
|
+ # 按时间戳排序
|
|
|
+ history_data.sort(key=lambda x: x['timestamp'] if x['timestamp'] else '')
|
|
|
+
|
|
|
+ # 构建返回数据,分离各个指标序列便于前端绘图
|
|
|
+ response_data = {
|
|
|
+ 'data_type': data_type,
|
|
|
+ 'timestamps': [item['timestamp'] for item in history_data],
|
|
|
+ 'row_counts': [item['row_count'] for item in history_data],
|
|
|
+ 'performance_scores': [item['performance_score'] for item in history_data],
|
|
|
+ 'model_details': history_data # 保留完整数据供前端使用
|
|
|
+ }
|
|
|
+
|
|
|
+ return jsonify(response_data), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'获取模型历史数据失败: {str(e)}', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+ finally:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+@bp.route('/batch-delete-datasets', methods=['POST'])
|
|
|
+def batch_delete_datasets():
|
|
|
+ """
|
|
|
+ 批量删除数据集的API接口
|
|
|
+
|
|
|
+ @body_param dataset_ids: 要删除的数据集ID列表
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ dataset_ids = data.get('dataset_ids', [])
|
|
|
+
|
|
|
+ if not dataset_ids:
|
|
|
+ return jsonify({'error': '未提供数据集ID列表'}), 400
|
|
|
+
|
|
|
+ results = {
|
|
|
+ 'success': [],
|
|
|
+ 'failed': [],
|
|
|
+ 'protected': [] # 被模型使用的数据集
|
|
|
+ }
|
|
|
+
|
|
|
+ for dataset_id in dataset_ids:
|
|
|
+ try:
|
|
|
+ # 调用单个删除接口
|
|
|
+ response = delete_dataset_endpoint(dataset_id)
|
|
|
+
|
|
|
+ # 解析响应
|
|
|
+ if response[1] == 200:
|
|
|
+ results['success'].append(dataset_id)
|
|
|
+ elif response[1] == 400 and 'models' in response[0].json:
|
|
|
+ # 数据集被模型保护
|
|
|
+ results['protected'].append({
|
|
|
+ 'id': dataset_id,
|
|
|
+ 'models': response[0].json['models']
|
|
|
+ })
|
|
|
+ else:
|
|
|
+ results['failed'].append({
|
|
|
+ 'id': dataset_id,
|
|
|
+ 'reason': response[0].json.get('error', '删除失败')
|
|
|
+ })
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'删除数据集 {dataset_id} 失败: {str(e)}')
|
|
|
+ results['failed'].append({
|
|
|
+ 'id': dataset_id,
|
|
|
+ 'reason': str(e)
|
|
|
+ })
|
|
|
+
|
|
|
+ # 构建响应消息
|
|
|
+ message = f"成功删除 {len(results['success'])} 个数据集"
|
|
|
+ if results['protected']:
|
|
|
+ message += f", {len(results['protected'])} 个数据集被保护"
|
|
|
+ if results['failed']:
|
|
|
+ message += f", {len(results['failed'])} 个数据集删除失败"
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ 'message': message,
|
|
|
+ 'results': results
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'批量删除数据集失败: {str(e)}')
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+@bp.route('/batch-delete-models', methods=['POST'])
|
|
|
+def batch_delete_models():
|
|
|
+ """
|
|
|
+ 批量删除模型的API接口
|
|
|
+
|
|
|
+ @body_param model_ids: 要删除的模型ID列表
|
|
|
+ @query_param delete_datasets: 布尔值,是否同时删除关联的数据集,默认为False
|
|
|
+ @return: JSON响应
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ model_ids = data.get('model_ids', [])
|
|
|
+ delete_datasets = request.args.get('delete_datasets', 'false').lower() == 'true'
|
|
|
+
|
|
|
+ if not model_ids:
|
|
|
+ return jsonify({'error': '未提供模型ID列表'}), 400
|
|
|
+
|
|
|
+ results = {
|
|
|
+ 'success': [],
|
|
|
+ 'failed': [],
|
|
|
+ 'datasets_deleted': [] # 如果delete_datasets为true,记录被删除的数据集
|
|
|
+ }
|
|
|
+
|
|
|
+ for model_id in model_ids:
|
|
|
+ try:
|
|
|
+ # 调用单个删除接口
|
|
|
+ response = delete_model(model_id, delete_dataset=delete_datasets)
|
|
|
+
|
|
|
+ # 解析响应
|
|
|
+ if response[1] == 200:
|
|
|
+ results['success'].append(model_id)
|
|
|
+ # 如果删除了关联数据集,记录数据集ID
|
|
|
+ if 'dataset_info' in response[0].json:
|
|
|
+ results['datasets_deleted'].append(
|
|
|
+ response[0].json['dataset_info']['dataset_id']
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ results['failed'].append({
|
|
|
+ 'id': model_id,
|
|
|
+ 'reason': response[0].json.get('error', '删除失败')
|
|
|
+ })
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'删除模型 {model_id} 失败: {str(e)}')
|
|
|
+ results['failed'].append({
|
|
|
+ 'id': model_id,
|
|
|
+ 'reason': str(e)
|
|
|
+ })
|
|
|
+
|
|
|
+ # 构建响应消息
|
|
|
+ message = f"成功删除 {len(results['success'])} 个模型"
|
|
|
+ if results['datasets_deleted']:
|
|
|
+ message += f", {len(results['datasets_deleted'])} 个关联数据集"
|
|
|
+ if results['failed']:
|
|
|
+ message += f", {len(results['failed'])} 个模型删除失败"
|
|
|
+
|
|
|
+ return jsonify({
|
|
|
+ 'message': message,
|
|
|
+ 'results': results
|
|
|
+ }), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f'批量删除模型失败: {str(e)}')
|
|
|
+ return jsonify({'error': str(e)}), 500
|
|
|
+
|
|
|
+@bp.route('/kriging_interpolation', methods=['POST'])
|
|
|
+def kriging_interpolation():
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ required = ['file_name', 'emission_column', 'points']
|
|
|
+ if not all(k in data for k in required):
|
|
|
+ return jsonify({"error": "Missing parameters"}), 400
|
|
|
+
|
|
|
+ # 添加坐标顺序验证
|
|
|
+ points = data['points']
|
|
|
+ if not all(len(pt) == 2 and isinstance(pt[0], (int, float)) for pt in points):
|
|
|
+ return jsonify({"error": "Invalid points format"}), 400
|
|
|
+
|
|
|
+ result = create_kriging(
|
|
|
+ data['file_name'],
|
|
|
+ data['emission_column'],
|
|
|
+ data['points']
|
|
|
+ )
|
|
|
+ return jsonify(result)
|
|
|
+ except Exception as e:
|
|
|
+ return jsonify({"error": str(e)}), 500
|
|
|
+
|
|
|
+# 显示切换模型
|
|
|
+@bp.route('/models', methods=['GET'])
|
|
|
+def get_models():
|
|
|
+ session = None
|
|
|
+ try:
|
|
|
+ # 创建 session
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ # 查询所有模型
|
|
|
+ models = session.query(Models).all()
|
|
|
+
|
|
|
+ logger.debug(f"Models found: {models}") # 打印查询的模型数据
|
|
|
+
|
|
|
+ if not models:
|
|
|
+ return jsonify({'message': 'No models found'}), 404
|
|
|
+
|
|
|
+ # 将模型数据转换为字典列表
|
|
|
+ models_list = [
|
|
|
+ {
|
|
|
+ 'ModelID': model.ModelID,
|
|
|
+ 'ModelName': model.Model_name,
|
|
|
+ 'ModelType': model.Model_type,
|
|
|
+ 'CreatedAt': model.Created_at.strftime('%Y-%m-%d %H:%M:%S'),
|
|
|
+ 'Description': model.Description,
|
|
|
+ 'DatasetID': model.DatasetID,
|
|
|
+ 'ModelFilePath': model.ModelFilePath,
|
|
|
+ 'DataType': model.Data_type,
|
|
|
+ 'PerformanceScore': model.Performance_score
|
|
|
+ }
|
|
|
+ for model in models
|
|
|
+ ]
|
|
|
+
|
|
|
+ return jsonify(models_list), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ return jsonify({'error': str(e)}), 400
|
|
|
+ finally:
|
|
|
+ if session:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+# 切换模型接口
|
|
|
+@bp.route('/switch-model', methods=['POST'])
|
|
|
+def switch_model():
|
|
|
+ session = None
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ model_id = data.get('model_id')
|
|
|
+ model_name = data.get('model_name')
|
|
|
+
|
|
|
+ # 创建 session
|
|
|
+ Session = sessionmaker(bind=db.engine)
|
|
|
+ session = Session()
|
|
|
+
|
|
|
+ # 查找模型
|
|
|
+ model = session.query(Models).filter_by(ModelID=model_id).first()
|
|
|
+ if not model:
|
|
|
+ return jsonify({'error': 'Model not found'}), 404
|
|
|
+
|
|
|
+ # 更新模型状态(或其他切换逻辑)
|
|
|
+ # 假设此处是更新模型的某些字段来进行切换
|
|
|
+ model.status = 'active' # 假设有一个字段记录模型状态
|
|
|
+ session.commit()
|
|
|
+
|
|
|
+ # 记录切换日志
|
|
|
+ logger.info(f'Model {model_name} (ID: {model_id}) switched successfully.')
|
|
|
+
|
|
|
+ return jsonify({'success': True, 'message': f'Model {model_name} switched successfully!'}), 200
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ logger.error('Failed to switch model:', exc_info=True)
|
|
|
+ return jsonify({'error': str(e)}), 400
|
|
|
+ finally:
|
|
|
+ if session:
|
|
|
+ session.close()
|
|
|
+
|
|
|
+# 修改了一下登录·接口
|
|
|
+@bp.route('/login', methods=['POST'])
|
|
|
+def login_user():
|
|
|
+ data = request.get_json()
|
|
|
+ logger.debug(f"Received login data: {data}") # 增加调试日志
|
|
|
+ name = data.get('name')
|
|
|
+ password = data.get('password')
|
|
|
+
|
|
|
+ logger.info(f"Login request received for user: {name}")
|
|
|
+
|
|
|
+ if not isinstance(name, str) or not isinstance(password, str):
|
|
|
+ logger.warning("Username and password must be strings")
|
|
|
+ return jsonify({"success": False, "message": "用户名和密码必须为字符串"}), 400
|
|
|
+
|
|
|
+ if not name or not password:
|
|
|
+ logger.warning("Username and password cannot be empty")
|
|
|
+ return jsonify({"success": False, "message": "用户名和密码不能为空"}), 400
|
|
|
+
|
|
|
+ query = "SELECT id, name, password FROM users WHERE name = ?"
|
|
|
+
|
|
|
+ try:
|
|
|
+ with get_db() as conn:
|
|
|
+ user = conn.execute(query, (name,)).fetchone()
|
|
|
+
|
|
|
+ if not user:
|
|
|
+ logger.warning(f"User '{name}' does not exist")
|
|
|
+ return jsonify({"success": False, "message": "用户名不存在"}), 400
|
|
|
+
|
|
|
+ stored_password = user[2] # 假设 'password' 是第三个字段
|
|
|
+ user_id = user[0] # 假设 'id' 是第一个字段
|
|
|
+
|
|
|
+ if check_password_hash(stored_password, password):
|
|
|
+ session['name'] = name
|
|
|
+ logger.info(f"User '{name}' logged in successfully.")
|
|
|
+ return jsonify({
|
|
|
+ "success": True,
|
|
|
+ "message": "登录成功",
|
|
|
+ "userId": user_id,
|
|
|
+ "name": name
|
|
|
+ })
|
|
|
+ else:
|
|
|
+ logger.warning(f"Incorrect password for user '{name}'")
|
|
|
+ return jsonify({"success": False, "message": "用户名或密码错误"}), 400
|
|
|
+
|
|
|
+ except sqlite3.DatabaseError as db_err:
|
|
|
+ logger.error(f"Database error during login process: {db_err}", exc_info=True)
|
|
|
+ return jsonify({"success": False, "message": "数据库错误"}), 500
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"Unexpected error during login process: {e}", exc_info=True)
|
|
|
+ return jsonify({"success": False, "message": "登录失败"}), 500
|
|
|
+
|
|
|
+# 添加退出登录状态接口
|
|
|
+@bp.route('/logout', methods=['GET', 'POST'])
|
|
|
+def logout_user():
|
|
|
+ try:
|
|
|
+ session.clear()
|
|
|
+ return jsonify({"msg": "退出成功"}), 200
|
|
|
+ except Exception as e:
|
|
|
+ logger.error(f"Error during logout process: {e}", exc_info=True)
|
|
|
+ return jsonify({"msg": "退出失败"}), 500
|
|
|
+
|
|
|
+# 获取软件介绍信息的路由
|
|
|
+@bp.route('/software-intro/<int:id>', methods=['GET'])
|
|
|
+def get_software_intro(id):
|
|
|
+ try:
|
|
|
+ conn = get_db_connection()
|
|
|
+ cursor = conn.cursor()
|
|
|
+ cursor.execute('SELECT title, intro FROM software_intro WHERE id = ?', (id,))
|
|
|
+ result = cursor.fetchone()
|
|
|
+ conn.close()
|
|
|
+
|
|
|
+ if result:
|
|
|
+ title, intro = result
|
|
|
+ return jsonify({
|
|
|
+ 'title': title,
|
|
|
+ 'intro': intro
|
|
|
+ })
|
|
|
+ return jsonify({}), 404
|
|
|
+ except sqlite3.Error as e:
|
|
|
+ print(f"数据库错误: {e}")
|
|
|
+ return jsonify({"error": f"数据库错误: {str(e)}"}), 500
|
|
|
+
|
|
|
+
|
|
|
+# 更新软件介绍信息的路由
|
|
|
+@bp.route('/software-intro/<int:id>', methods=['PUT'])
|
|
|
+def update_software_intro(id):
|
|
|
+ try:
|
|
|
+ data = request.get_json()
|
|
|
+ title = data.get('title')
|
|
|
+ intro = data.get('intro')
|
|
|
+
|
|
|
+ conn = get_db_connection()
|
|
|
+ cursor = conn.cursor()
|
|
|
+ cursor.execute('UPDATE software_intro SET title =?, intro =? WHERE id = ?', (title, intro, id))
|
|
|
+ conn.commit()
|
|
|
+ conn.close()
|
|
|
+
|
|
|
+ return jsonify({'message': '软件介绍更新成功'})
|
|
|
+ except sqlite3.Error as e:
|
|
|
+ print(f"数据库错误: {e}")
|
|
|
+ return jsonify({"error": f"数据库错误: {str(e)}"}), 500
|
|
|
+
|
|
|
+
|
|
|
+# 处理图片上传的路由
|
|
|
+@bp.route('/upload-image', methods=['POST'])
|
|
|
+def upload_image():
|
|
|
+ file = request.files['image']
|
|
|
+ if file:
|
|
|
+ filename = str(uuid.uuid4()) + '.' + file.filename.rsplit('.', 1)[1].lower()
|
|
|
+ file.save(os.path.join(os.getcwd(), 'uploads', filename))
|
|
|
+ imageUrl = f'http://127.0.0.1:5000/uploads/{filename}'
|
|
|
+ return jsonify({'imageUrl': imageUrl})
|
|
|
+ return jsonify({'error': '未找到图片文件'}), 400
|
|
|
+
|
|
|
+
|
|
|
+# 配置静态资源服务
|
|
|
+@bp.route('/uploads/<path:filename>')
|
|
|
+def serve_image(filename):
|
|
|
+ uploads_folder = os.path.join(os.getcwd(), 'uploads')
|
|
|
+ return send_from_directory(uploads_folder, filename)
|