|
@@ -0,0 +1,125 @@
|
|
|
+# '''
|
|
|
+#模型筛选
|
|
|
+# '''
|
|
|
+
|
|
|
+## 导入常用基本包
|
|
|
+import os
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+from PIL import Image
|
|
|
+from model_saver import save_model
|
|
|
+
|
|
|
+# 机器学习模型导入
|
|
|
+from sklearn.ensemble import RandomForestRegressor
|
|
|
+from sklearn.model_selection import cross_val_score,cross_val_predict
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.metrics import mean_squared_error
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+
|
|
|
+## 导入常用辅助函数
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+from sklearn.model_selection import cross_val_predict
|
|
|
+
|
|
|
+## 导入数据处理函数
|
|
|
+from sklearn.preprocessing import StandardScaler
|
|
|
+from sklearn.preprocessing import MinMaxScaler
|
|
|
+
|
|
|
+## 导入评分函数
|
|
|
+from sklearn.metrics import r2_score
|
|
|
+from sklearn.metrics import mean_squared_error
|
|
|
+from sklearn.metrics import mean_absolute_error
|
|
|
+from sklearn.metrics import accuracy_score
|
|
|
+from sklearn.metrics import log_loss
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
+
|
|
|
+
|
|
|
+# 导入数据
|
|
|
+data=pd.read_excel('model_optimize\data\data_filt.xlsx')
|
|
|
+x = data.iloc[:,1:10]
|
|
|
+y = data.iloc[:,-1]
|
|
|
+
|
|
|
+# 为 x 赋予列名
|
|
|
+x.columns = [
|
|
|
+ 'organic_matter', # OM g/kg
|
|
|
+ 'chloride', # CL g/kg
|
|
|
+ 'cec', # CEC cmol/kg
|
|
|
+ 'h_concentration', # H+ cmol/kg
|
|
|
+ 'hn', # HN mg/kg
|
|
|
+ 'al_concentration', # Al3+ cmol/kg
|
|
|
+ 'free_alumina', # Free alumina g/kg
|
|
|
+ 'free_iron', # Free iron oxides g/kg
|
|
|
+ 'delta_ph' # ΔpH
|
|
|
+]
|
|
|
+
|
|
|
+y.name = 'target_ph'
|
|
|
+
|
|
|
+Xtrain, Xtest, Ytrain, Ytest=train_test_split(x, y, test_size=0.2)
|
|
|
+
|
|
|
+# 筛选随机种子
|
|
|
+score_5cv_all = []
|
|
|
+for i in range(0, 200, 1):
|
|
|
+ rfc =RandomForestRegressor(random_state=i)
|
|
|
+ score_5cv =cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
|
|
|
+ score_5cv_all.append(score_5cv)
|
|
|
+ pass
|
|
|
+score_max_5cv = max(score_5cv_all)
|
|
|
+
|
|
|
+random_state_5cv = range(0, 200)[score_5cv_all.index(max(score_5cv_all))] # 5cv最大得分对应的随机种子
|
|
|
+
|
|
|
+print("最大5cv得分:{}".format(score_max_5cv),
|
|
|
+ "random_5cv:{}".format(random_state_5cv))
|
|
|
+
|
|
|
+
|
|
|
+# 筛选随机树数目
|
|
|
+score_5cv_all = []
|
|
|
+for i in range(1, 400, 1):
|
|
|
+ rfc = RandomForestRegressor(n_estimators=i,
|
|
|
+ random_state=random_state_5cv)
|
|
|
+ score_5cv = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
|
|
|
+ score_5cv_all.append(score_5cv)
|
|
|
+ pass
|
|
|
+score_max_5cv = max(score_5cv_all)
|
|
|
+n_est_5cv = range(1,400)[score_5cv_all.index(score_max_5cv)] # 5cv最大得分对应的树数目
|
|
|
+
|
|
|
+print("最大5cv得分:{}".format(score_max_5cv),
|
|
|
+ "n_est_5cv:{}".format(n_est_5cv)) # 5cv最大得分对应的树数目??
|
|
|
+score_test_all = []
|
|
|
+
|
|
|
+
|
|
|
+# 筛选最大深度
|
|
|
+score_5cv_all = []
|
|
|
+for i in range(1, 300, 1):
|
|
|
+ rfc = RandomForestRegressor(n_estimators=n_est_5cv
|
|
|
+ , random_state=random_state_5cv
|
|
|
+ , max_depth=i)
|
|
|
+ score_5cv = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
|
|
|
+ score_5cv_all.append(score_5cv)
|
|
|
+ pass
|
|
|
+score_max_5cv = max(score_5cv_all)
|
|
|
+max_depth_5cv = range(1,300)[score_5cv_all.index(score_max_5cv)]
|
|
|
+print(
|
|
|
+ "最大5cv得分:{}".format(score_max_5cv),
|
|
|
+ "max_depth_5cv:{}".format(max_depth_5cv))
|
|
|
+
|
|
|
+# 确定参数进行训练
|
|
|
+rfc = RandomForestRegressor(n_estimators=n_est_5cv,random_state=random_state_5cv,max_depth=max_depth_5cv)
|
|
|
+CV_score = cross_val_score(rfc, Xtrain, Ytrain, cv=5).mean()
|
|
|
+CV_predictions = cross_val_predict(rfc, Xtrain, Ytrain, cv=5)
|
|
|
+rmse1 = np.sqrt(mean_squared_error(Ytrain,CV_predictions))
|
|
|
+regressor = rfc.fit(Xtrain, Ytrain)
|
|
|
+test_predictions = regressor.predict(Xtest)
|
|
|
+score_test = regressor.score(Xtest,Ytest)
|
|
|
+rmse2 = np.sqrt(mean_squared_error(Ytest,test_predictions))
|
|
|
+print("5cv:",CV_score)
|
|
|
+print("rmse_5CV",rmse1)
|
|
|
+print("test:",score_test)
|
|
|
+print("rmse_test",rmse2)
|
|
|
+
|
|
|
+# 保存训练好的模型
|
|
|
+custom_path='model_optimize\pkl' # 模型保存路径
|
|
|
+prefix='rf_model_' # 模型文件名前缀
|
|
|
+save_model(rfc, custom_path, prefix)
|
|
|
+
|