123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- """
- Agricultural数据导入脚本
- @description: 从Excel文件读取agricultural_data数据并导入到agricultural_data表
- """
- import os
- import sys
- import pandas as pd
- import logging
- from datetime import datetime
- from sqlalchemy.orm import sessionmaker
- # 添加项目根目录到Python路径
- sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- from app.database import engine, SessionLocal
- from app.models.agricultural import AgriculturalData # 需创建对应的ORM模型
- # 设置日志
- logging.basicConfig(
- level=logging.INFO,
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
- )
- logger = logging.getLogger(__name__)
- class AgriculturalDataImporter:
- """
- 农业投入品数据导入器
- @description: 从Excel文件读取农业投入品数据并导入到数据库
- """
- def __init__(self, excel_path, sheet_name='Agricultural'):
- """
- 初始化导入器
- @param {str} excel_path - Excel文件路径
- @param {str} sheet_name - Sheet名称,默认为'agricultural_data'
- """
- self.excel_path = excel_path
- self.sheet_name = sheet_name
- # 定义必需字段列表(根据数据库设计文档)
- self.required_columns = [
- 'county_name', 'crop_sowing_area', 'nitrogen_usage',
- 'phosphorus_usage', 'potassium_usage', 'compound_usage',
- 'organic_usage', 'pesticide_usage', 'farmyard_usage',
- 'plastic_film_usage', 'nitrogen_cd_flux', 'phosphorus_cd_flux',
- 'potassium_cd_flux', 'compound_cd_flux', 'organic_cd_flux',
- 'pesticide_cd_flux', 'farmyard_cd_flux', 'plastic_film_cd_flux',
- 'total_cd_flux', 'data_year'
- ]
- # 数值型字段列表
- self.numeric_columns = [
- 'crop_sowing_area', 'nitrogen_usage', 'phosphorus_usage',
- 'potassium_usage', 'compound_usage', 'organic_usage',
- 'pesticide_usage', 'farmyard_usage', 'plastic_film_usage',
- 'nitrogen_cd_flux', 'phosphorus_cd_flux', 'potassium_cd_flux',
- 'compound_cd_flux', 'organic_cd_flux', 'pesticide_cd_flux',
- 'farmyard_cd_flux', 'plastic_film_cd_flux', 'total_cd_flux',
- 'data_year'
- ]
- def read_excel_data(self):
- """
- 读取Excel文件数据
- @returns: DataFrame 读取的数据
- """
- try:
- logger.info(f"开始读取Excel文件: {self.excel_path}")
- logger.info(f"Sheet名称: {self.sheet_name}")
- # 检查文件是否存在
- if not os.path.exists(self.excel_path):
- raise FileNotFoundError(f"Excel文件不存在: {self.excel_path}")
- # 读取Excel文件
- df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
- logger.info(f"成功读取数据,共 {len(df)} 行")
- logger.info(f"数据列: {list(df.columns)}")
- # 显示前几行数据供确认
- logger.info("前5行数据预览:")
- logger.info(df.head().to_string())
- return df
- except Exception as e:
- logger.error(f"读取Excel文件失败: {str(e)}")
- raise
- def validate_data(self, df):
- """
- 验证数据格式和完整性
- @param {DataFrame} df - 要验证的数据
- @returns: DataFrame 验证后的数据
- """
- try:
- logger.info("开始验证数据...")
- # 检查必需的列是否存在
- missing_columns = [col for col in self.required_columns if col not in df.columns]
- if missing_columns:
- raise ValueError(f"缺少必需的列: {missing_columns}")
- # 将列名转换为小写(带下划线)
- df.columns = [col.lower() for col in df.columns]
- required_columns_lower = [col.lower() for col in self.required_columns]
- numeric_columns_lower = [col.lower() for col in self.numeric_columns]
- # 检查数据类型
- logger.info("检查数据类型...")
- # 转换数值类型
- for col in numeric_columns_lower:
- if col in df.columns:
- # 对于数值列,转换为浮点数
- df[col] = pd.to_numeric(df[col], errors='coerce')
- # 处理特殊字段data_year(转换为整数)
- if col == 'data_year':
- df[col] = df[col].astype(pd.Int64Dtype(), errors='ignore')
- # 处理空值 - 所有字段必须非空(除了县市名称可能是文本)
- empty_columns = df.isnull().any()
- empty_cols = [col for col in empty_columns.index if empty_columns[col]]
- if empty_cols:
- logger.warning(f"发现以下列存在空值: {', '.join(empty_cols)}")
- # 对于数值列,如果有空值,填充为0
- for col in numeric_columns_lower:
- if col in df.columns and df[col].isnull().any():
- df[col] = df[col].fillna(0)
- logger.info(f"已将 {col} 的空值替换为0")
- # 再次检查县市名称
- if 'county_name' in df.columns and df['county_name'].isnull().any():
- logger.warning("县市名称存在空值,填充为'未知区域'")
- df['county_name'] = df['county_name'].fillna('未知区域')
- # 验证逻辑关系:总镉输入通量是否等于各分项之和
- tolerance = 1e-6
- total_calculated = (
- df['nitrogen_cd_flux'] + df['phosphorus_cd_flux'] +
- df['potassium_cd_flux'] + df['compound_cd_flux'] +
- df['organic_cd_flux'] + df['pesticide_cd_flux'] +
- df['farmyard_cd_flux'] + df['plastic_film_cd_flux']
- )
- mismatches = abs(df['total_cd_flux'] - total_calculated) > tolerance
- if mismatches.any():
- mismatched_indices = mismatches[mismatches].index.tolist()
- logger.warning(f"发现 {len(mismatched_indices)} 行 total_cd_flux 值与各分项之和不一致:")
- for i in mismatched_indices[:5]: # 只显示前5个示例
- logger.warning(f"行 {i}: total_cd_flux={df.at[i, 'total_cd_flux']}, 计算值={total_calculated[i]}")
- # 用计算值覆盖原始值
- df['total_cd_flux'] = total_calculated
- logger.info("已自动修正 total_cd_flux 值为各分项之和")
- logger.info(f"数据验证完成,有效数据 {len(df)} 行")
- return df
- except Exception as e:
- logger.error(f"数据验证失败: {str(e)}")
- raise
- def import_data(self, df):
- """
- 将数据导入到数据库
- @param {DataFrame} df - 要导入的数据
- """
- try:
- logger.info("开始导入数据到数据库...")
- # 创建数据库会话
- db = SessionLocal()
- try:
- # 检查是否有重复数据
- existing_count = db.query(AgriculturalData).count()
- logger.info(f"数据库中现有数据: {existing_count} 条")
- # 批量创建对象
- batch_size = 1000
- total_rows = len(df)
- imported_count = 0
- for i in range(0, total_rows, batch_size):
- batch_df = df.iloc[i:i + batch_size]
- batch_objects = []
- for _, row in batch_df.iterrows():
- try:
- # 创建AgriculturalData对象
- agricultural_data = AgriculturalData(
- county_name=str(row['county_name']),
- crop_sowing_area=float(row['crop_sowing_area']),
- nitrogen_usage=float(row['nitrogen_usage']),
- phosphorus_usage=float(row['phosphorus_usage']),
- potassium_usage=float(row['potassium_usage']),
- compound_usage=float(row['compound_usage']),
- organic_usage=float(row['organic_usage']),
- pesticide_usage=float(row['pesticide_usage']),
- farmyard_usage=float(row['farmyard_usage']),
- plastic_film_usage=float(row['plastic_film_usage']),
- nitrogen_cd_flux=float(row['nitrogen_cd_flux']),
- phosphorus_cd_flux=float(row['phosphorus_cd_flux']),
- potassium_cd_flux=float(row['potassium_cd_flux']),
- compound_cd_flux=float(row['compound_cd_flux']),
- organic_cd_flux=float(row['organic_cd_flux']),
- pesticide_cd_flux=float(row['pesticide_cd_flux']),
- farmyard_cd_flux=float(row['farmyard_cd_flux']),
- plastic_film_cd_flux=float(row['plastic_film_cd_flux']),
- total_cd_flux=float(row['total_cd_flux']),
- data_year=int(row['data_year'])
- )
- batch_objects.append(agricultural_data)
- except Exception as e:
- logger.warning(f"跳过行 {i + _}: {str(e)}")
- continue
- if batch_objects:
- # 批量插入
- db.add_all(batch_objects)
- db.commit()
- imported_count += len(batch_objects)
- logger.info(f"已导入 {imported_count}/{total_rows} 条数据")
- logger.info(f"数据导入完成! 成功导入 {imported_count} 条数据")
- # 验证导入结果
- final_count = db.query(AgriculturalData).count()
- logger.info(f"导入后数据库总数据: {final_count} 条")
- except Exception as e:
- db.rollback()
- logger.error(f"数据导入失败,已回滚: {str(e)}")
- raise
- finally:
- db.close()
- except Exception as e:
- logger.error(f"数据导入过程失败: {str(e)}")
- raise
- def run_import(self):
- """
- 执行完整的导入流程
- """
- try:
- logger.info("=" * 60)
- logger.info("开始农业投入品数据导入流程")
- logger.info("=" * 60)
- # 1. 读取Excel数据
- df = self.read_excel_data()
- # 2. 验证数据
- df = self.validate_data(df)
- # 3. 导入数据
- self.import_data(df)
- logger.info("=" * 60)
- logger.info("农业投入品数据导入流程完成!")
- logger.info("=" * 60)
- except Exception as e:
- logger.error(f"导入流程失败: {str(e)}")
- raise
- def main():
- """
- 主函数
- """
- # Excel文件路径
- excel_path = r"D:\destkop\数据库对应数据.xlsx" # 与原始文件相同
- sheet_name = "Agricultural" # 指定对应的sheet名称
- try:
- # 创建导入器并执行导入
- importer = AgriculturalDataImporter(excel_path, sheet_name)
- importer.run_import()
- except Exception as e:
- logger.error(f"程序执行失败: {str(e)}")
- sys.exit(1)
- if __name__ == "__main__":
- main()
|