123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- """
- FluxCd_input数据导入脚本
- @description: 从Excel文件读取FluxCd_input数据并导入到fluxcd_input_data表
- """
- import os
- import sys
- import pandas as pd
- import logging
- from datetime import datetime
- from sqlalchemy.orm import sessionmaker
- # 添加项目根目录到Python路径
- sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- from app.database import engine, SessionLocal
- from app.models.FluxCd_input import FluxCdInputData # 需创建对应的ORM模型
- # 设置日志
- logging.basicConfig(
- level=logging.INFO,
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
- )
- logger = logging.getLogger(__name__)
- class FluxCdInputDataImporter:
- """
- FluxCd输入数据导入器
- @description: 从Excel文件读取FluxCd输入数据并导入到数据库
- """
- def __init__(self, excel_path, sheet_name='FluxCd_input'):
- """
- 初始化导入器
- @param {str} excel_path - Excel文件路径
- @param {str} sheet_name - Sheet名称,默认为'FluxCd_input'
- """
- self.excel_path = excel_path
- self.sheet_name = sheet_name
- # 定义必需字段列表(设计文档中的原始列名)
- self.required_columns = [
- 'Farmland_ID', 'Sample_ID', 'Initial_Cd',
- 'DQCJ_Cd', 'GGS_Cd', 'NCP_Cd',
- 'DX_Cd', 'DB_Cd', 'ZL_Cd', 'JG_Cd'
- ]
- # 默认值设置(针对允许空的字段)
- self.default_values = {
- 'DX_Cd': 0.023,
- 'DB_Cd': 0.368
- }
- def read_excel_data(self):
- """
- 读取Excel文件数据
- @returns: DataFrame 读取的数据
- """
- try:
- logger.info(f"开始读取Excel文件: {self.excel_path}")
- logger.info(f"Sheet名称: {self.sheet_name}")
- # 检查文件是否存在
- if not os.path.exists(self.excel_path):
- raise FileNotFoundError(f"Excel文件不存在: {self.excel_path}")
- # 读取Excel文件
- df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
- logger.info(f"成功读取数据,共 {len(df)} 行")
- logger.info(f"数据列: {list(df.columns)}")
- # 显示前几行数据供确认
- logger.info("前5行数据预览:")
- logger.info(df.head().to_string())
- return df
- except Exception as e:
- logger.error(f"读取Excel文件失败: {str(e)}")
- raise
- def validate_data(self, df):
- """
- 验证数据格式和完整性
- @param {DataFrame} df - 要验证的数据
- @returns: DataFrame 验证后的数据
- """
- try:
- logger.info("开始验证数据...")
- # 检查必需的列是否存在
- missing_columns = [col for col in self.required_columns if col not in df.columns]
- if missing_columns:
- raise ValueError(f"缺少必需的列: {missing_columns}")
- # 将列名转换为小写(带下划线)
- df.columns = [col.lower() for col in df.columns]
- required_columns_lower = [col.lower() for col in self.required_columns]
- default_values_lower = {k.lower(): v for k, v in self.default_values.items()}
- # 检查数据类型
- logger.info("检查数据类型...")
- # 转换数值类型
- for col in required_columns_lower:
- df[col] = pd.to_numeric(df[col], errors='coerce')
- # 处理空值:对于有默认值的列,用默认值填充;其他列必须非空
- # 对于允许空且有默认值的列
- for col in ['dx_cd', 'db_cd']:
- if col in required_columns_lower:
- # 用默认值填充空值
- default_val = default_values_lower.get(col, None)
- if default_val is not None:
- df[col] = df[col].fillna(default_val)
- # 同时,也要确保其他非空字段没有空值(除了这两个字段,其他字段不能为空)
- # 其他字段如果有空值,则删除行
- # 先找出没有默认值的必需字段
- non_default_columns = [col for col in required_columns_lower if col not in ['dx_cd', 'db_cd']]
- if df[non_default_columns].isnull().any().any():
- logger.warning("发现非默认值列有无效的数值,将跳过这些行")
- # 找出这些行
- invalid_rows = df[df[non_default_columns].isnull().any(axis=1)]
- logger.warning(f"无效行数: {len(invalid_rows)}")
- # 删除这些行
- df = df.dropna(subset=non_default_columns)
- logger.info(f"数据验证完成,有效数据 {len(df)} 行")
- return df
- except Exception as e:
- logger.error(f"数据验证失败: {str(e)}")
- raise
- def import_data(self, df):
- """
- 将数据导入到数据库
- @param {DataFrame} df - 要导入的数据
- """
- try:
- logger.info("开始导入数据到数据库...")
- # 创建数据库会话
- db = SessionLocal()
- try:
- # 检查是否有重复数据
- existing_count = db.query(FluxCdInputData).count()
- logger.info(f"数据库中现有数据: {existing_count} 条")
- # 批量创建对象
- batch_size = 1000
- total_rows = len(df)
- imported_count = 0
- for i in range(0, total_rows, batch_size):
- batch_df = df.iloc[i:i + batch_size]
- batch_objects = []
- for _, row in batch_df.iterrows():
- try:
- # 创建FluxCdInputData对象
- fluxcd_input = FluxCdInputData(
- farmland_id=int(row['farmland_id']),
- sample_id=int(row['sample_id']),
- initial_cd=float(row['initial_cd']),
- atmospheric_deposition=float(row['dqcj_cd']),
- irrigation_input=float(row['ggs_cd']),
- agro_chemicals_input=float(row['ncp_cd']),
- groundwater_leaching=float(row['dx_cd']),
- surface_runoff=float(row['db_cd']),
- grain_removal=float(row['zl_cd']),
- straw_removal=float(row['jg_cd'])
- )
- batch_objects.append(fluxcd_input)
- except Exception as e:
- logger.warning(f"跳过行 {i + _}: {str(e)}")
- continue
- if batch_objects:
- # 批量插入
- db.add_all(batch_objects)
- db.commit()
- imported_count += len(batch_objects)
- logger.info(f"已导入 {imported_count}/{total_rows} 条数据")
- logger.info(f"数据导入完成! 成功导入 {imported_count} 条数据")
- # 验证导入结果
- final_count = db.query(FluxCdInputData).count()
- logger.info(f"导入后数据库总数据: {final_count} 条")
- except Exception as e:
- db.rollback()
- logger.error(f"数据导入失败,已回滚: {str(e)}")
- raise
- finally:
- db.close()
- except Exception as e:
- logger.error(f"数据导入过程失败: {str(e)}")
- raise
- def run_import(self):
- """
- 执行完整的导入流程
- """
- try:
- logger.info("=" * 60)
- logger.info("开始FluxCd输入数据导入流程")
- logger.info("=" * 60)
- # 1. 读取Excel数据
- df = self.read_excel_data()
- # 2. 验证数据
- df = self.validate_data(df)
- # 3. 导入数据
- self.import_data(df)
- logger.info("=" * 60)
- logger.info("FluxCd输入数据导入流程完成!")
- logger.info("=" * 60)
- except Exception as e:
- logger.error(f"导入流程失败: {str(e)}")
- raise
- def main():
- """
- 主函数
- """
- # Excel文件路径
- excel_path = r"D:\destkop\数据库对应数据.xlsx" # 与原始文件相同
- sheet_name = "FluxCd_input" # 指定对应的sheet名称
- try:
- # 创建导入器并执行导入
- importer = FluxCdInputDataImporter(excel_path, sheet_name)
- importer.run_import()
- except Exception as e:
- logger.error(f"程序执行失败: {str(e)}")
- sys.exit(1)
- if __name__ == "__main__":
- main()
|