123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- """
- 评价数据导入脚本
- @description: 从Excel文件读取Assessment评价数据并导入到Assessment表
- """
- import os
- import sys
- import pandas as pd
- import logging
- from datetime import datetime
- # 添加项目根目录到Python路径
- sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- from app.database import engine, SessionLocal
- from app.models.assessment import Assessment # 确保已创建Assessment模型
- # 设置日志
- logging.basicConfig(
- level=logging.INFO,
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
- )
- logger = logging.getLogger(__name__)
- class AssessmentDataImporter:
- """
- 评价数据导入器
- @description: 从Excel文件读取评价数据并导入到Assessment表
- """
- def __init__(self, excel_path, sheet_name='Assessment'):
- """
- 初始化导入器
- @param {str} excel_path - Excel文件路径
- @param {str} sheet_name - Sheet名称,默认为'Assessment'
- """
- self.excel_path = excel_path
- self.sheet_name = sheet_name
- # 用地类型映射
- self.land_use_mapping = {
- '旱地': 0.0,
- '水田': 1.0,
- '水浇地': 2.0
- }
- # 定义必需列
- self.required_columns = [
- 'Farmland_ID',
- 'Sample_ID',
- 'Type',
- 'IDW_2023SP_Cd',
- 'IDW_2023SP_pH',
- 'SOM_IDW',
- 'safety_production_threshold',
- 'pollution_risk_screening_value'
- ]
- def read_excel_data(self):
- """
- 读取Excel文件数据
- @returns: DataFrame 读取的数据
- """
- try:
- logger.info(f"开始读取Excel文件: {self.excel_path}")
- logger.info(f"Sheet名称: {self.sheet_name}")
- # 检查文件是否存在
- if not os.path.exists(self.excel_path):
- raise FileNotFoundError(f"Excel文件不存在: {self.excel_path}")
- # 读取Excel文件
- df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
- logger.info(f"成功读取数据,共 {len(df)} 行")
- logger.info(f"数据列: {list(df.columns)}")
- # 显示前几行数据供确认
- logger.info("前5行数据预览:")
- logger.info(df.head().to_string())
- return df
- except Exception as e:
- logger.error(f"读取Excel文件失败: {str(e)}")
- raise
- def validate_data(self, df):
- """
- 验证数据格式和完整性
- @param {DataFrame} df - 要验证的数据
- @returns: DataFrame 验证后的数据
- """
- try:
- logger.info("开始验证数据...")
- # 检查必需的列是否存在
- missing_columns = [col for col in self.required_columns if col not in df.columns]
- if missing_columns:
- raise ValueError(f"缺少必需的列: {missing_columns}")
- # 检查Farmland_ID和Sample_ID是否重复
- duplicates = df.duplicated(subset=['Farmland_ID', 'Sample_ID'])
- if duplicates.any():
- dup_rows = df[duplicates]
- logger.warning(f"发现 {len(dup_rows)} 条重复记录(基于Farmland_ID和Sample_ID)")
- logger.info("重复记录示例:\n" + dup_rows.head().to_string())
- # 删除重复行,保留第一个出现的
- df = df.drop_duplicates(subset=['Farmland_ID', 'Sample_ID'], keep='first')
- logger.info(f"删除重复记录后剩余 {len(df)} 行数据")
- # 转换数值类型
- numeric_columns = [
- 'IDW_2023SP_Cd',
- 'IDW_2023SP_pH',
- 'SOM_IDW',
- 'safety_production_threshold',
- 'pollution_risk_screening_value'
- ]
- for col in numeric_columns:
- if col in df.columns:
- # 尝试转换为数值类型
- df[col] = pd.to_numeric(df[col], errors='coerce')
- # 检查空值
- if df[col].isnull().any():
- invalid_rows = df[df[col].isnull()]
- logger.warning(f"列 {col} 中有无效值,行号: {list(invalid_rows.index)}")
- # 标记为无效但保留行,稍后处理
- df[f'{col}_valid'] = ~df[col].isnull()
- # 转换Farmland_ID和Sample_ID为整数
- for col in ['Farmland_ID', 'Sample_ID']:
- if col in df.columns:
- # 首先转换为浮点类型,再尝试转整数
- df[col] = pd.to_numeric(df[col], errors='coerce').fillna(-1)
- df[col] = df[col].astype(int)
- # 检查无效值
- if (df[col] < 0).any():
- invalid_rows = df[df[col] < 0]
- logger.warning(f"列 {col} 中有无效值,行号: {list(invalid_rows.index)}")
- df[f'{col}_valid'] = (df[col] >= 0)
- # 用地类型转换
- if 'Type' in df.columns:
- # 尝试直接转换为数值
- df['Type_Numeric'] = pd.to_numeric(df['Type'], errors='coerce')
- # 处理无法转换的类型
- unknown_types = df[df['Type_Numeric'].isnull()]['Type'].unique()
- if len(unknown_types) > 0:
- logger.info(f"发现未知用地类型: {unknown_types}, 尝试映射...")
- # 使用映射转换
- df['Type_Mapped'] = df['Type'].map(self.land_use_mapping)
- # 合并两种转换方式
- df['Final_Type'] = df['Type_Numeric'].fillna(df['Type_Mapped'])
- else:
- df['Final_Type'] = df['Type_Numeric']
- # 检查是否还有无效值
- if df['Final_Type'].isnull().any():
- invalid_rows = df[df['Final_Type'].isnull()]
- logger.warning(f"列 Type 中有无法识别的值,行号: {list(invalid_rows.index)}")
- logger.info("为无效值设置默认值0.0(旱地)")
- df['Final_Type'] = df['Final_Type'].fillna(0.0)
- logger.info(f"数据验证完成,有效数据 {len(df)} 行")
- return df
- except Exception as e:
- logger.error(f"数据验证失败: {str(e)}")
- raise
- def create_assessment_object(self, row):
- """
- 创建评价数据对象
- @param {pd.Series} row - 数据行
- @returns: Assessment 对象
- """
- try:
- return Assessment(
- farmland_id=row['Farmland_ID'],
- sample_id=row['Sample_ID'],
- type=row['Final_Type'],
- idw_2023sp_cd=row['IDW_2023SP_Cd'],
- idw_2023sp_ph=row['IDW_2023SP_pH'],
- som_idw=row['SOM_IDW'],
- safety_production_threshold=row['safety_production_threshold'],
- pollution_risk_screening_value=row['pollution_risk_screening_value']
- )
- except KeyError as e:
- logger.warning(f"创建对象时缺少必要字段: {str(e)}")
- return None
- except Exception as e:
- logger.warning(f"创建Assessment对象失败: {str(e)}")
- return None
- def import_data(self, df):
- """
- 将数据导入到数据库
- @param {DataFrame} df - 要导入的数据
- """
- try:
- logger.info("开始导入数据到数据库...")
- # 创建数据库会话
- db = SessionLocal()
- try:
- # 检查现有数据量
- existing_count = db.query(Assessment).count()
- logger.info(f"数据库中现有评价数据记录: {existing_count} 条")
- # 批量创建对象并导入
- total_rows = len(df)
- imported_count = 0
- skipped_count = 0
- invalid_count = 0
- # 分批处理数据
- for i, row in df.iterrows():
- try:
- # 检查是否有效行(所有关键字段都有效)
- is_valid = True
- for col in self.required_columns:
- if f'{col}_valid' in row and not row[f'{col}_valid']:
- is_valid = False
- break
- if not is_valid:
- invalid_count += 1
- logger.debug(f"跳过无效行 {i}: 存在无效值")
- continue
- # 创建Assessment对象
- assessment = self.create_assessment_object(row)
- if not assessment:
- skipped_count += 1
- continue
- # 添加到会话
- db.add(assessment)
- imported_count += 1
- # 每50条提交一次
- if imported_count % 50 == 0:
- db.commit()
- logger.info(f"已导入 {imported_count}/{total_rows} 条数据")
- except Exception as e:
- logger.warning(f"导入行 {i} 时出错: {str(e)}")
- skipped_count += 1
- db.rollback()
- # 提交剩余数据
- db.commit()
- # 更新统计信息
- new_count = db.query(Assessment).count()
- added_count = new_count - existing_count
- logger.info(f"评价数据导入完成!")
- logger.info(f"成功导入: {imported_count} 条")
- logger.info(f"跳过无效数据: {invalid_count} 条")
- logger.info(f"处理失败: {skipped_count} 条")
- logger.info(f"数据库中新增加: {added_count} 条记录")
- logger.info(f"数据库总记录: {new_count} 条")
- except Exception as e:
- db.rollback()
- logger.error(f"数据导入失败,已回滚: {str(e)}")
- raise
- finally:
- db.close()
- except Exception as e:
- logger.error(f"数据导入过程失败: {str(e)}")
- raise
- def run_import(self):
- """
- 执行完整的导入流程
- """
- try:
- logger.info("=" * 60)
- logger.info("开始评价数据导入流程")
- logger.info("=" * 60)
- # 1. 读取Excel数据
- df = self.read_excel_data()
- # 2. 验证数据
- df = self.validate_data(df)
- # 3. 导入数据
- self.import_data(df)
- logger.info("=" * 60)
- logger.info("评价数据导入流程完成!")
- logger.info("=" * 60)
- except Exception as e:
- logger.error(f"导入流程失败: {str(e)}")
- raise
- def main():
- """
- 主函数
- """
- # Excel文件路径
- excel_path = r"D:\destkop\数据库对应数据.xlsx" # 根据实际路径修改
- sheet_name = "Assessment" # 确保Excel中有这个sheet
- try:
- # 创建导入器并执行导入
- importer = AssessmentDataImporter(excel_path, sheet_name)
- importer.run_import()
- except Exception as e:
- logger.error(f"程序执行失败: {str(e)}")
- sys.exit(1)
- if __name__ == "__main__":
- main()
|