123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- """
- 参数数据导入脚本
- @description: 从Excel文件读取Parameters参数数据并导入到Parameters表
- """
- import os
- import sys
- import pandas as pd
- import logging
- from datetime import datetime
- # 添加项目根目录到Python路径
- sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
- from app.database import engine, SessionLocal
- from app.models.parameters import Parameters # 确保你已创建Parameters模型
- # 设置日志
- logging.basicConfig(
- level=logging.INFO,
- format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
- )
- logger = logging.getLogger(__name__)
- class ParametersDataImporter:
- """
- 参数数据导入器
- @description: 从Excel文件读取参数数据并导入到Parameters表
- """
- def __init__(self, excel_path, sheet_name='Parameters'):
- """
- 初始化导入器
- @param {str} excel_path - Excel文件路径
- @param {str} sheet_name - Sheet名称,默认为'Parameters'
- """
- self.excel_path = excel_path
- self.sheet_name = sheet_name
- # 定义参数列的默认值映射
- self.default_values = {
- 'F1': 0.6,
- 'F2': 0.85,
- 'F3': 0.05,
- 'F4': 0.158,
- 'F5': 0.06,
- 'F6': 0.065,
- 'F7': 0.6,
- 'F8': 0.25,
- 'F9': 0.35,
- 'F10': 0.25,
- 'F11': 800,
- 'NF': 0.05,
- 'PF': 0.158,
- 'KF': 0.06,
- 'CF': 0.065,
- 'OF': 0.6,
- 'P': 0.25,
- 'FF': 0.35,
- 'AF': 0.25,
- 'Area': '韶关'
- }
- # 定义必需的最小参数列
- self.required_columns = ['Area']
- def read_excel_data(self):
- """
- 读取Excel文件数据
- @returns: DataFrame 读取的数据
- """
- try:
- logger.info(f"开始读取Excel文件: {self.excel_path}")
- logger.info(f"Sheet名称: {self.sheet_name}")
- # 检查文件是否存在
- if not os.path.exists(self.excel_path):
- raise FileNotFoundError(f"Excel文件不存在: {self.excel_path}")
- # 读取Excel文件
- df = pd.read_excel(self.excel_path, sheet_name=self.sheet_name)
- logger.info(f"成功读取数据,共 {len(df)} 行")
- logger.info(f"数据列: {list(df.columns)}")
- # 显示前几行数据供确认
- logger.info("前5行数据预览:")
- logger.info(df.head().to_string())
- return df
- except Exception as e:
- logger.error(f"读取Excel文件失败: {str(e)}")
- raise
- def validate_data(self, df):
- """
- 验证数据格式和完整性
- @param {DataFrame} df - 要验证的数据
- @returns: DataFrame 验证后的数据
- """
- try:
- logger.info("开始验证数据...")
- # 检查必需的列是否存在
- missing_columns = [col for col in self.required_columns if col not in df.columns]
- if missing_columns:
- raise ValueError(f"缺少必需的列: {missing_columns}")
- # 确保数据文件包含所有参数列
- for column in self.default_values.keys():
- if column not in df.columns:
- logger.warning(f"列 {column} 不存在于Excel文件中,将使用默认值 {self.default_values[column]}")
- df[column] = self.default_values[column]
- # 验证数值列的数据类型
- numeric_columns = list(self.default_values.keys())
- numeric_columns.remove('Area') # Area不是数值类型
- for col in numeric_columns:
- # 尝试转换为数值类型
- df[col] = pd.to_numeric(df[col], errors='coerce')
- # 检查是否有无效值
- if df[col].isnull().any():
- invalid_rows = df[df[col].isnull()]
- logger.warning(f"列 {col} 中有无效值,行号: {list(invalid_rows.index)}")
- # 填充默认值
- logger.info(f"将为无效行填充默认值 {self.default_values[col]}")
- df[col] = df[col].fillna(self.default_values[col])
- # 确保Area列是字符串类型
- if 'Area' in df.columns:
- df['Area'] = df['Area'].astype(str)
- logger.info(f"数据验证完成,有效数据 {len(df)} 行")
- return df
- except Exception as e:
- logger.error(f"数据验证失败: {str(e)}")
- raise
- def import_data(self, df):
- """
- 将数据导入到数据库
- @param {DataFrame} df - 要导入的数据
- """
- try:
- logger.info("开始导入数据到数据库...")
- # 创建数据库会话
- db = SessionLocal()
- try:
- # 检查是否有重复数据
- existing_count = db.query(Parameters).count()
- logger.info(f"数据库中现有参数记录: {existing_count} 条")
- # 如果已有数据,先删除现有数据
- if existing_count > 0:
- db.query(Parameters).delete()
- logger.info(f"已删除 {existing_count} 条现有参数记录")
- # 获取总行数
- total_rows = len(df)
- imported_count = 0
- skipped_count = 0
- # 使用ORM模型创建对象并插入
- for i, row in df.iterrows():
- try:
- # 创建参数对象
- param = Parameters(
- f1=row['F1'],
- f2=row['F2'],
- f3=row['F3'],
- f4=row['F4'],
- f5=row['F5'],
- f6=row['F6'],
- f7=row['F7'],
- f8=row['F8'],
- f9=row['F9'],
- f10=row['F10'],
- f11=row['F11'],
- nf=row['NF'],
- pf=row['PF'],
- kf=row['KF'],
- cf=row['CF'],
- of=row['OF'],
- p=row['P'],
- ff=row['FF'],
- af=row['AF'],
- area=row['Area']
- )
- # 添加到会话
- db.add(param)
- imported_count += 1
- # 每100条提交一次
- if imported_count % 100 == 0:
- db.commit()
- logger.info(f"已导入 {imported_count}/{total_rows} 条数据")
- except Exception as e:
- logger.warning(f"跳过行 {i}: {str(e)}")
- skipped_count += 1
- db.rollback() # 回滚当前会话
- # 提交剩余的数据
- db.commit()
- logger.info(f"参数导入完成! 成功导入 {imported_count} 条数据, 跳过 {skipped_count} 条无效数据")
- # 验证导入结果
- final_count = db.query(Parameters).count()
- logger.info(f"导入后数据库参数记录: {final_count} 条")
- except Exception as e:
- db.rollback()
- logger.error(f"数据导入失败,已回滚: {str(e)}")
- raise
- finally:
- db.close()
- except Exception as e:
- logger.error(f"数据导入过程失败: {str(e)}")
- raise
- def run_import(self):
- """
- 执行完整的导入流程
- """
- try:
- logger.info("=" * 60)
- logger.info("开始参数数据导入流程")
- logger.info("=" * 60)
- # 1. 读取Excel数据
- df = self.read_excel_data()
- # 2. 验证数据
- df = self.validate_data(df)
- # 3. 导入数据
- self.import_data(df)
- logger.info("=" * 60)
- logger.info("参数数据导入流程完成!")
- logger.info("=" * 60)
- except Exception as e:
- logger.error(f"导入流程失败: {str(e)}")
- raise
- def main():
- """
- 主函数
- """
- # Excel文件路径
- excel_path = r"D:\destkop\数据库对应数据.xlsx" # 或你的文件路径
- sheet_name = "Parameters" # 确保你的Excel文件中有这个sheet
- try:
- # 创建导入器并执行导入
- importer = ParametersDataImporter(excel_path, sheet_name)
- importer.run_import()
- except Exception as e:
- logger.error(f"程序执行失败: {str(e)}")
- sys.exit(1)
- if __name__ == "__main__":
- main()
|